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This talk

= Qverview

= Self-supervised learning on Graphs
- [AAAI'22] Augmentation-Free Self-Supervised Learning on Graphs
« [CIKM’22] Relational Self-Supervised Learning on Graphs



This talk

= Qverview



Graph (Network)

= A general description of data and their relations




Various Real-World Graphs
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Machine Learning on Graphs

Classical ML tasks in graphs:

= Node classification
 Predict the type of a given node

= Link prediction
« Predict whether two nodes are linked

= Community detection
- Identify densely linked clusters of nodes

= Network similarity
« How similar are two (sub)networks

Link Prediction
(Friend Recommendation)



Machine Learning on Graphs
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Traditional Graph Representation

ABCDETFGHI
o L L0 Ul B Problems
B 0 001 0 0 :

: g1 = Suffer from data sparsity
Cl100100100
Df101000110 = Suffer from high dimensionality
Elo1 0000001 _ _ ,
Flo1 0000000 = High complexity for computation
G100 1100000 = Does not represent “semantics”
H{00 0100000
1{00 0010000 .

Adjacency matrix

How to effectively and efficiently represent graphs is the key!

— Deep learning-based approach?

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml



Challenges of Graph Representation Learning

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

- RNNs for text/sequences ...

®
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= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)
- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019



Machine Learning on Graphs
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Graph Representation Learning

= Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original network

= Similar nodes in a network have similar vector representations

Node Vector Tasks
fiu > R4 e . o > | » Node c!assmcatlon
R « Clustering
O Feature representation, « Link prediction
embedding .
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Deepwalk

= Deepwalk converts a graph into a collection of node sequences through random walk
= Treat random walks on networks as sentences

= Distributional hypothesis
« Word embedding: Words in similar contexts have similar meanings

- Node embedding: Nodes in similar structural contexts are similar

Deepwalk
Low(©) = ) log p(olf) = ) log p((N(v:),v:)|6)
0e0 0e0
= Z Z log p(vjlvi), Exampleseq { a=>b—->c—-v;>d—-e—>f

OvjeN(v; ' i
0€0 v;eN(v;) Window size=2 ai—>b—>C—>vi—>d—>ei'>f

« (: The set of all observations obtained from random walks

- 0=(Nw),v;) €0 Center node V;

« Center node v; Neighborhood N(v;) = b,c,d,e
« Neighboring nodes N (v;)

Observation o o= (Nw;),v;)=({b,c,d, e}, v



Graph Convolutional Network (GCN)

= |dea: Node’s neighborhood defines a computation graph
- Messages contain relational information + attribute information

Determine node Propagate messages and
computation graph transform information

Learn how to propagate information across the graph to compute node features

13



This talk

= Self-supervised learning on Graphs
- [AAAI'22] Augmentation-Free Self-Supervised Learning on Graphs
« [CIKM’22] Relational Self-Supervised Learning on Graphs

14



What is self-supervised learning?

= A form of unsupervised learning where the data provides the supervision
= |[n general, withhold some part of the data, and task the network with predicting it

= An example of pretext task: Relative positioning
« Train network to predict relative position of two regions in the same image

(Figure credit) Unsupervised visual representation learning by context prediction, ICCV2015



What is self-supervised learning?

= Pretext task : Rotation
« Which one has the correct rotation?

(Figure credit) Self-Supervised Learning, Andrew Zisserman

= Pretext task: Jigsaw puzzle

(b
Shuffled
= Pretext task : Colorlzatlon




Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020

Examples of Pretext tasks on graphs

Information Type

Attribute

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021

Attribute Mask

Pairwise Attribute Similarity

Pretext Tasks
Node Property >
Local
Edge Mask >
Pairwise Distance >
Global
Distance to Clusters>

>

17



Pretext Tasks >

Node Property

Local Structure-based Pretext Task

>
-

Edge Mask

= Node property
« Goal: To predict the property for each node in the graph such as their
degree, local node importance, and local clustering coefficient.

Information Type

Predicteld degree of node v;
Loats (O, A X Do) = 1 D, (for(G)us =
v €Dy

Degree of node v;

= Edge mask
- Goal: To predict whether or not there exists a link between a given node pair

Lse15(0',A,X,Dy) = Cross-entropy loss

: > f(fw(|fef(9)w—fef(G)ij,l)+ﬂ1 ST (fullfo (G)es — for(9)w; ), 0)

|Me| (vi,vj)EMe | e| (vi,vj)eﬂe

Connected edges Not connected edges
18



Pretext Tasks >

Global Structure-based Pretext Task

Pairwise Distance

= Pairwise distance
« Goal: To predict the distance between different node pair.

Loas (@ AKX DY) = S C(fullfor (@), — for(G)u,]):Cpy)

S
| | ('Ui ,'UJ)GS I 241
Pairwise distance between node v; and v;

\ < ﬁ—.\/r /7<Zi — -
<~ -

= DiSta nceZCIUSterS 1-hop context 2-hop context
« Goal: To predict the distance from the unlabeled nodes to predefined graph clusters h( <z, 2>, y=0) h(<zi, 2>, y=1)

Global
Distance to CIusters>

Information Type

- Step 1: Apply graph clustering to get k clusters {C;, C5, ..., Ci }
- Step 2: In each cluster (;, assume the node with the highest degree as the center node

Loe(0',A, X, Dy) = Z 1 for (G)w, — di]|?
'UzEDU
d; = [di1,di, ..., dig]

Distance from node v; to cluster c,

19



Pretext Tasks >
Attribute-based Pretext Task

= Attribute mask
« Goal: To predict the masked attribute

« Apply PCA to reduce the dimensionality of features

Information Type

Attribute Mask

Attribute >
>

Pairwise Attribute Similarity

1
Loets (0, A, X, Do) = =t D [ for(G)os — x4l

M|
v;EM
e Feature of node v;

= Pairwise attribute similarity
« Goal: To predict the similarity of pairwise node features

1
Eself(0/7A7X7DU) = m Z I|fw(|f9’(g)vz - f9’ (g)'vj ’) - Sij||2

(’Ui 7vj)€T
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Context prediction

= Pretext task: Context prediction

Input graph

(a) Context Prediction

Cm

o

@ = Center node
= Context anchor nodes

K-hop neighborhood

Nodes that are shared between the
neighborhood and the context graph

Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain
GIN 67.0 74.2 +7.2 64.8 +£ 1.0 742+ 1.5 | +94
GCN 68.9 72.2 +3.4 63.2+1.0 709 £ 1.7 | +7.7
GraphSAGE 68.3 70.3 +2.0 65.7+1.2 685+ 15 | +2.8
GAT 66.8 60.3 -6.5 68.2 + 1.1 67.8+36 | -04

21



Taxonomy of Self-Supervised Learning

So far

Generative / Predictive

Data
Zo

Data
I

Data z

Data x;

= Contrastive learning

Contrastive

- Given: X = {x, x%, x{,..,xy_1}; Similarity function s(-) (e.g., cosine similarity)

« Goal: s(f(x), f(x*)) > s(f(x), f(x7))

 Contrastive/InfoNCE Loss

exp (s(f(x), (1))

Classification
(similar or not)

Ly = —Ey |log

(Figure credit) https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

exp (s(f (), £ ) + 20t exp (s (00, £ (7))




The Contrastive Learning Paradigm

Maximize agreement
Z; - > Zj

g<~>] Lot

Projection Head

h; <— Representation —» h;

fC)

Encoder

(f) Rotate o°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
= Algorithm / e exp(sim(zi, 25)/7)
. i,j = — 10 5N ,
« 1) Sample mini batch of N examples 1 Lesta exp(sim(zs, z1)/7)

« 2) Create 2N data points via Data Augmentation
- 3) Given a positive pair, treat other 2(N — 1) points as negative examples

« = Instance Discrimination!

Reduce: Dist. between representations of different augmented views of the same image (Positive)
Increase: Dist. between representations of augmented views from different images (Negative)



Deep Graph Contrastive Representation Learning (GRACE)

= Pull the representation of the same node in the two augmented graphs

= Push apart representations of every other node

eS

s

Original features

Corrupted features
g Re ) Positive pairs
Wk ,, ve ed, <----= Negative pairs (intra-view)
0de £ 8es . . .
eaq,res <---> Negative pairs (inter-view)

eO(ui,vi)/T

Y

N N
\eO(ui,vi)/t + S: ]l[k#]ee(u"’”’“)ﬁ + Z ]]-[k;éz] e@(ui,uk)/T
siti k=1

the positive pair l\czl B J

Vv Vv
inter-view negative pairs intra-view negative pairs

24



Shortcomings of Contrastive Methods

= 1) Requires negative samples = Sampling bias
Treat different image as negative even if they share the semantics

= 2) Requires careful augmentation

bace bbbp
Crop Y 0 & s S &
(o7 b, [ g, g, o7 55
-50 eo/-op 9r, %, % gsp@/} sOro 9r. %, /7 gsﬁ t”fe s'(_

Cutout
c NodeDrop - -17.56%  -17.70% | -15.35% [OREDIR -2.94% | -5.89% | -1.07% | -3.26%
o l
o Color |
©
g Subgraph - -21.65% -22.82% -24.99% -21.17%  Subgraph - -19.42%
¥ Sobel r lSU
L .
(0]
S ; EdgePert - -15.58% -22.07% |- % -16.03%  EdgePert - -11.56% | -11.10% [EEINEEA -
= Noise
I_| S —

Blur FeatMask-. -26.39% -1515!6 FeatMask - -31.45%
Rotate
NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking
\" \$ N\ <2 \S e
o® oV \O o2 < AW \&
O o o 0 \O 2 Q\o‘a o<®
2nd transformation
Image classification Graph classification
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Can We Remove Negative Sampling?
= Can we train cross-view prediction framework without negative samples?

= Problem: Predicting directly in representation space can lead to collapsed representation
« Contrastive methods circumvents this by reformulating the prediction problem as discrimination task (Pos <> Neg)

MSE Loss

Cross-view prediction framework Trivial Solution = Constant Vector

26



Straightforward Solution to Overcome Collapsed Representation

= Use a fixed randomly initialized network to produce targets for our predictions

Randomly
 ——_— —_—
Initialized

Top-1 Accuracy 2 1.4 %

Randomly
ﬁ . . . ﬁ
Initialized
N B -

supervision

MSE

Loss

Top-1 Accuracy =2 18.8 %
even with random supervision

Core motivation of
non-contrastive methods!

27



Bootstrap Your Own Latent (BYOL)

= BYOL uses two neural networks to learn: 1) online and 2) target networks

= From a given target representation, we train a new online representation by predicting the target
representation

view representation projection prediction

(e L T

1) Online Network Update = Gradient-based update

R
fo [—] g6 19
:l Yy I > =z ine 00 [ C [
0 I 0 i— q6(z0) Y online B A Hq0<29> B Z/&’HQ LngL = Lye+ Loe (Symmetrize)
X )
I ) |
> “¢

input
image t

L ; 0 <« Optimizer(ﬁ, VQEE?L, 77)
| ) | () FII ' Online network
> Y. —AA—> 58(%¢ targe
fe u 9¢ sg
— 2) Target Network Update = Exponential Moving Average
Only online parameters are updated to reduce the loss, ¢ <16+ (1—1)0

while the target parameters follow a different objective Target network Online network

— Avoid Collapsed Representation
28



Large-Scale Representation Learning on Graphs via Bootstrapping

= BGRL is a simple extension of BYOL to graph domain = 2" place solution in KDD cup 2021

= Representations are directly learned by predicting the representation of each node in one view of the
graph, using the representation of the same node in another view

NCE B e
B _Zaotiag
N = 1Za,n 1 He, |

= Graph Augmentation - Node attribute masking + Edge masking

29



Shortcomings of Contrastive Methods

Research Question
Is augmentation appropriate for
. graph-structured data?

= 2) Requires careful augmentation

bace bbbp
Crop , S Y, S
00, g, &, 00, 73 &, N
E 3 9 e, 9 4
50 O,% Qr%/) Lo O,o Qr%/) P s, s4.

Cutout
c NodeDrop - -17.56%  -17.70% | -15.35% [OREDIR -2.94% | -5.89% | -1.07% | -3.26%
S l
= Color L
©
g Subgraph - -21.65% -22.82% -24.99% -21.17%  Subgraph - -19.42% [BEEEA S EX:IA
¥ Sobel r lSU
L -
g ST,
~ ; EdgePert - -15.58% -22.07% | -1 | -16.03%  EdgePert - -11.56% | -11.10% [EEINER e
+ Noise
%]
I_| - —

Blur FeatMask-. -26.39% -1515!6 FeatMask - SERPIAN -31.45% KA
Rotate

NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking

\" \ N N2 \{ e
o Og@“ 0¥ R I 2\ ?\oxa‘

2nd transformation

Image classification Graph classification

30
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Augmentation-Free Self-Supervised Learning on Graphs

Published in AAAI’22

Namkyeong Lee, Junseok Lee, Chanyoung Park



Motivation: Is Augmentation Appropriate for Graph-structured Data?

Random Cropping Color Distortion

= However in the case of graphs, we cannot ascertain whether the augmented graph would be positively
related to original graph

= Image’s underlying semantic is hardly changed after augmentation

Drop Node Drop Edge
d OH 0. OH Community 1
O. S
T -> /\I/OY AT —
1dh g dh
aspirin alkene A RS
Bobgim ia%
Perturb Edge g / -, ;S
. Community 2
0. OH Alice
0 » Q Q \
o dh
0 il W
aspirin ¥ - lactone Comimunity 3

Because graphs contain not only the semantic but also the structural information

32



Motivation: Is Augmentation Appropriate for Graph-structured Data?

= Performance sensitivity according to hyperparameters for augmentations

bace

Yo, Sy, & A
(e b, &7 Sy,
@o,% 9»%/7 ep, s

St

NodeDrop - -17.56% | -17.70% |-15.35% |-

Comp. Photo CS Physics
Node | BGRL| -4.00% -1.06%  -0.20%  -0.69%

N ) 3 7 Subgraph - -21.65% -22.82% -24.99% -21.17% Subgraph- -19.42%
Classi.| GCA | -19.18% -5.48% -0.27% OOM 159

Node | BGRL| -11.57%  -13.30% -0.78%  -6.46% EdgePert - -15.58% -22.07% |-14.96%  -16.03%  Edgepert -JRNIED -31.03% _20<
Clust. | GCA | -26.28% -23.27% -1.64% OOM

FeatMask -| -14.56% -26.39% | -15.15% FeatMask- SERPLA -31.45% EEFEA
\

NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking

Node-level task Graph-level task

= The quality of the learned representations relies on the choice of augmentation scheme
« Performance on various downstream tasks varies greatly according to the choice of augmentation hyperparameters

We need more stable and general framework for
generating alternative view of the original graph + remove negative sampling process
without relying on augmentation



Augmentation-Free Graph Representation Learning

= |nstead of creating two arbitrarily augmented views of a graph,

- Use the original graph as-is as one view, and generate another view by discovering nodes that can serve as positive
samples via k-nearest neighbor search in embedding space

= However, naively selected positive samples with k-NN includes false positives
« More than 10% of false negatives

-®- Rand. GCN =—E- Adj. == Rand.GCN + Adj. -+ Features
Computers WikiCS
90 '--—_t—-r _____ —e— * — 80 H{. . L N—
< 801 T-e Te-e~_
= FARE T, S .
% of same label R ) N A A——. ~3
0 o 60
among neighbors 4 eo
=y 50
o 50
@]
40 40
30 Avennnn, Arrrrrnn Aanes FYTTEERL 4 301 Avvnnun. Arrrrnnn Aeeani e FOTITIT A
4 8 16 32 64 4 8 16 32 64
Num. Neighbors in k-NN Num. Neighbors in k-NN

We need to filter out false positives regarding local and global perspective!



Capturing Local and Global Semantics

Cluster 1

Cluster 3

Cluster 2

 B;: Set of k-NNs of query v;
« N;: Set of adjacent nodes of query v;
« C;: Set of nodes that are in the same cluster with query v;

A Query Node (v;)

O Node (V\v;)

:: .. Nearest Neighbors (B;)
<> Adjacency (N;)

Same cluster as v; (C;)

'::) Local Positive (B; N N;)

l::) Global Positive (B; N C;)

@ Rcal Positive (P;)

= Obtain real positives for v;

= Minimize the cosine distance between query and
real positives P;

ZehﬁT

Log=—= S‘ D

z—l v; €P;

35



Overall Architecture of AFGRL

do

k-NN(B;) =

\ Adj.(N;) =
: Local (NinBi)
E Global (B; N C;)
% K-means (C;) —

P;

\

______________________

Tl
Stop-Gradient

>

______________________

\ 4
N
L
L 7 11w

i=1j€P;
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Experiments

= Task: Node classification

WikiCS Computers Photo Co.CS Co.Physics
Sup. GCN 7719 +£012 86.51 £054 9242 +022 93.03 £031 95.65 +0.16
Raw feats. 7198 £000 73.81 £000 7853 +000 90.37 £0.00 93.58 +0.00
node2vec 71.79 £ 005 84.39 +£0.08 89.67 +£0.12 85.08 £0.03 91.19 +0.04
DeepWalk | 74.35 +£0.06 85.68 £006 89.44 +0.11 84.61 £022 91.77 +0.15
DW +feats. | 77.21 +£0.03 86.28 £007 90.05 +£0.08 87.70 £0.04 94.90 + 0.09
DGI 7535 +£014 83.95+047 91.61 £022 92.15+063 94.51 +£052
GMI 74.85 £ 008 8221 +£031 90.68 +0.17 OOM OOM
MVGRL 7752 +£008 87.52+0.11 91.74 £007 92.11 £0.12 95.33 +0.03
GRACE 7797 +0.63 86.50+033 92.46 +0.18 92.17 +£0.04 OOM
GCA 7794 + 067 87.32+050 92.39 +033 92.84 +0.15 OOM
BGRI J6RA 074 K960 L0037 0307 4038 0250 o014 OSAR L 002
AFGRL 77.62 +049 89.88 +033 93.22 +028 93.27 +0.17 95.69 + 0.10
Recall...
Comp. Photo @ Physics
Node | BGRL| -4.00% -1.06% -0.20% -0.69%
Classi.| GCA | -19.18% -5.48% -0.27% OOM
Node | BGRL| -11.57% -13.30% -0.78%  -6.46%
Clust. | GCA | -26.28% -23.27% -1.64% OOM

AFGRL outperforms SOTA baselines

Accuracy (%)
[0} O (e}
(e} o =

(oo}
(oo

O
[

Vo)
o

Accuracy (%)

o
[oe]

Computers

TT—

(0]
(o]

4

Num. Nearest Neighbors (k)

8 16

Computers

32

|0—o——o—0

1

3

5 )
Num. K-Means Runs (M)

9

94.0 1

93.51

93.01

92.51

92.0

94.0

93.51

93.0 1

92.57

92.0 =

Co. CS

@- *——o

4 8 16 32
Num. Nearest Neighbors (k)
Co. CS

O—O———O—0

1 3 5 7 9
Num. K-Means Runs (M)

AFGRL is stable over hyperparameters

—> Can be easily trained compared with
other augmentation-based methods.

37



Experiments

= Task: T-SNE visualization

1 .{k . " % 1
-)"f g 0 e
. " X e
¢ pap ¥ A TEEIER
.E“-’..’.-._ ..Q‘. J‘._" b
s g A
k . = .:‘.ﬂ,'- . oo
b N W o
. L 3%
v A
‘ Sampled
1 & % 1
. i
& / ’\' '. (.,
= / '4’ .........................
'( '? \ (j’ % g e L
'l v 27 &l Ly | oY A
™ ‘,.:‘ . (K T -
.‘.\_ ,‘ ‘‘‘‘‘ o e . s.‘“ ............................ A —————— ( ') i ";\ b
2 R " e =l NV Sl RN
“;“ ,‘.’ - 5 I 7 " g \\ "
ot 1%, (et
q - N ./ ;
() :
\_/ Towescuge || | ssumes 2

(a) GCA

(b) AFGRL

Nodes are more tightly grouped in AFGRL
— Captures fine-grained class information
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Motivation: Graphs exhibit relational information

= Recent graph representation learning methods do not reflect the nature of the graph

- Graphs exhibit relational information among nodes

Edge [ Push > Pull}

Community 1 /)
-
W\' g @ % Tom i

E: ?7@” ----- g/ \n

~ James
Alice ¢~ | \
=N N g e £ =
e Tom  __- -7 Alice
Community2 ~ ~ ~ 777
(a) Graph-Structured Data (b) Recent GRL methods

Previous methods (contrastive & non-contrastive) cannot fully
benefit from relational information of graph structured data

-> They learn augmentation-invariant node representation

Contrastive methods (GRACE, GCA)

Original features
Corrupted features

~— Positive pairs
----~ Negative pairs (intra-view)
<= Negative pairs (inter-view)

Research question: How can we consider the relational information among nodes?
- Augmentation-invariant relational information



Learning Augmentation-invariant Relationship on Graphs

= How can we define relationship between a query node and anchor nodes?

1T

Cmem
Anchor Node —> @ ® _ Anchor Node

Query Node ——— @ Dot product similarity JI.L
—
[ n_ulii ad

® =

Anchor Node =———» @ ¥~ Anchor Node

Representation Space Similarity Distribution

We define cosine similarity as relationship between a query node and anchor nodes

41



A Simple Approach

50 16
sim(z?, h>
Online GRG0, J)/TH)

p2(j) =

= ,Yuj € Nj
Sken; exp(sim(zf, hy)/z9)

Tl allams
y !
Query Node P min L, . Le,g = Z KL(P,-Q | Pf)
§ 1 UiE(V
T3 p°

.76 T e
exp(51m(hi,hj)/r§)
Sken; exp(sim(hS, bl) /z)

THOE Voj € N;

Online network is trained to mimic the relational information captured by target network
= Learning augmentation-invariant relationship! (Instead of augmentation-invariant node representation)

Next research question: How to sample anchor nodes?
Diverse relational information regarding both global and local perspectives should be considered



Capturing Global Similarity: Sampling Global Anchor Nodes

= Global anchor nodes: Structurally distant nodes

()] 50’

t" 401 I()Ir(])mputers

c t . . pe . . . . .
S30 o Misclassification rate of low-degree nodes is significantly high
©

2 201 - Degree-bias issue!

210]

S oL 1 ‘ ‘ ‘ ‘ ‘

0 0 10 20 30 40 50 . s e

= Node degree We should focus on low-degree nodes while training RGRL

Misclassification rate for certain degree of nodes

= Approach: Sample anchor nodes from inverse degree-weighted distribution wj = alog(dng'H) +

- Sample more from low-degree nodes

0<ax<l1
() YT vejey
p 1e\J) = , VUj €
sampre Qo eV Wk
Inverse degree-weighted distribution

Setting 0 < a < 1 approximates the misclassification rate



Capturing Local Similarity: Sampling Local Anchor Nodes

= Local anchor nodes: Structurally close nodes

—® - Adjacency K-NN

Diffusion . . . . . .
Computers Photo Adjacency may fail to capture fine-grained relationship among nodes
<90/ %0 « ex) “Data Mining ” vs. “Machine Learning” community
£ « Structurally close but different class
= 80 *-———-0-——-—0—--0
g o————o———-o——,——o\go
E ol - We should sample anchor nodes that are
O

4 8 6 32 9 1) Structurally close with query node in the graph structure
Number of Samples (k) « 2) Share the same label with the query node
Ratio of its neighboring nodes being the same label

= Approach: Sample anchor nodes based on diffusion score matrix (Personalized PageRank)

N kk i
S = Z H(1 - kT
k=0 v;
(i,)) indicates closeness of node v; and v;
t : Teleport probability (t € (0,1))
T : Symmetric transition matrix
Diffusion Matrix S




Proposed Method: RGRL (Overview)

Global Similarity
Online
)
Pglob min Lglgb
:]1 ‘ h \\‘ § A :
3
p _ 0 ¢
Query Node : | glob Log= Z KL(p; |l p;)
l“ :" U,‘E(V
— Local Similarity |—| H _l
\\\\ /,’ D
Ty | B @ —0 Plocal [ min Llpeal
| \\l “’ Nglob ’
—»: Tal"get : Q00 Ems) ! |
: fE //l OOO N%OCal O«-§~~*<___-*.é:|:| [—_] H H
== plgocal
0, . eXP(Sim(i?,hjf-)/Te) ¢ exp(sim(hf, hf)/rf)
pi (J) = ,Yoj € N; p; () = \Yo; € N;

Sken; exp(sim(z?, h?) /1) Sren; exp(sim(hS, bl) /z)

(Relational information (Relational information
regarding online network) regarding target network)



Discussion: How RGRL overcomes limitations of previous works?

= Previous works: 1) Contrastive methods, 2) Non-contrastive methods

= 1) Limitation of Contrastive methods
- Sampling bias: Simply treating all other nodes as negatives incurs false negatives

« Another problem occurs when sampling bias is combined with the contrastive loss that is defined as follows [1]:

Positive pair

« As 7 decreases, the model gives larger penalty to hard negative

exp(sim(z;, 2:) /T
b= —l08 ——= p(sin} - 7)/7) )f/ samples (push away)
k=1 ]l[k;ﬁi] eXp(Slm(zia Zk ) « Makes sense if we know true negatives (supervised setting)

« But, harmful in self-supervised learning where false negatives exist

Negative pair

= Contrastive loss is “Hardness-aware loss”
- Gives larger penalties to similar nodes = similar nodes that belong to negative samples become more dissimilar

= Thus, false negative is trained to be more dissimilar



Discussion: How RGRL overcomes limitations of previous works?

= The problem gets even more severe in graph domain,
 In graphs, most “HARD” negatives are indeed “FALSE” negatives

False Negative False Negative

20 True Negative 1.0 True Negative
0.8
215 >
2 20.6
81.0 A
0.4
0.5 0.2
0.0 0.0
=0.5 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
similarity similarity
(a) CIFAR-10 (Image) (b) Coauthor-CS (Graph)

= RGRL relaxes the strict binary classification of contrastive methods with soft labeling
« RGRL can decide how much to push or pull other nodes based on the relational information among the nodes with
out relying on the binary decisions of positives and negatives
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Discussion: How RGRL overcomes limitations of previous works?

= Previous works: 1) Contrastive methods, 2) Non-contrastive methods

= 2) Limitation of Non-contrastive methods
 Since we don’t use any negative samples, node features should be fully informative
« Performance actually degrades if features contain noise (as will be shown later)
 Overfit to a few non-informative feature

= RGRL alleviates the overfitting problem with a little help from other nodes in the graph
« Learn from the relationship with other nodes

= RGRL relaxes the strict self-preserving loss with relation-preserving loss
 Allows the representations to vary as long as the relationship among the representations is preserve



Summary: How RGRL overcomes limitations of previous works?

Previous Works RGRL
Contrastive methods Strict ) Relaxed
(GRACE, GCA) Binary Classification Soft Labeling
Non-contrastive methods Strict ) Relaxed
(BGRL) Self-Preserving Relation-Preserving

RGRL achieves the best of both worlds by relaxing strict constraints of previous works



Experiments: Node Classification

Transductive Inductive
Cite- Pub-  Cora ogbn-arXiv .

Cora seer med  Full Valid Test Reddit PPI

83.38 70.79 83.96 64.19 94.84 67.12

GRACE | (095  (083) (029 (036) | OOM OOM | (405 (0.05)
82.79 70.70 84.19 64.34 94.85 66.72

GCA 101)  (091) (032 (042) | OOM  OOM | (40 (0.08)
CCA-SSG 83.01 70.35 84.81 64.09 59.43 58.50 94.89 66.09
(0.66) (1.23) (0.22) (0.37) (0.05) (0.08) (0.02) (0.01)

BGRL 82.82 69.06 86.16 63.94 70.66 69.61 94.90 68.89
(0.86) (0.80)  (0.19)  (0.39) (0.06) (0.09) (0.04) (0.08)
RGRL 8398 71.29 85.33 64.62 72.34 71.49 95.04 69.28
(0.78)  (0.87) (0200  (0.39) | (0.09) (0.08) | (0.03)  (0.06)

WikiCS Computers  Photo Co.CS Co.Physics
GCN 7719 (0.12) 8651 (054)  92.42 (0.22)  93.03 (031)  95.65 (0.16)
Feats. 71.98 (0.00)  73.81 (0.00)  78.53 (0.00) _ 90.37 (0.00) _ 93.58 (0.00)
n2v 71.79 (0.05) 8439 (0.08)  89.67 (0.12)  85.08 (0.03)  91.19 (0.04)
DW 74.35 (0.06)  85.68 (0.06)  89.44 (0.11)  84.61(022)  91.77 (0.15)
DW-+Feats. | 77.21 (0.03)  86.28 (0.07)  90.05 (0.08)  87.70 (0.04)  94.90 (0.09)
DGI 75.35 (0.14)  83.95 (047)  91.61(0.22)  92.15(0.63)  94.51 (0.52)
GMI 74.85 (0.08)  82.21(031)  90.68 (0.17) OOM OOM
MVGRL 77.52 (0.08) 8752 (0.11)  91.74(0.07)  92.11(0.12)  95.33 (0.03)
GRACE 78.25 (0.65)  88.15(043)  92.52(0.32)  92.60 (0.11) OOM
GCA 78.30 (0.62)  88.49 (051)  92.99(0.27)  92.76 (0.16) OOM
CCA-SSG | 77.88 (0.41)  87.01(0.41) 9259 (0.25)  92.77 (0.17)  95.16 (0.10)
BGRL 79.60 (0.60)  89.23 (0.34)  93.06 (0.30)  92.90 (0.15)  95.43 (0.09)
RGRL 80.29(0.72) 89.70(0.44) 93.43(0.31) 92.94(0.13) 95.46(0.10)

RGRL outperforms previous methods that overlook the relationship among nodes

Performance on node classification tasks

Performance on various datasets (transductive/inductive)
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Experiments: Node Classification

WikiCS Computers  Photo Co.CS Co.Physics
GCN 7719 (0.12) 8651 (0.54)  92.42 (0.22)  93.03 (031)  95.65 (0.16)
Feats. 71.98 (0.00)  73.81(0.00)  78.53 (0.00) _ 90.37 (0.00) _ 93.58 (0.00)
n2v 71.79 (0.05)  84.39 (0.08)  89.67 (0.12)  85.08 (0.03)  91.19 (0.04)
DW 74.35 (0.06)  85.68 (0.06)  89.44 (0.11)  84.61(022)  91.77 (0.15)
DW+Feats. | 77.21(0.03)  86.28 (0.07)  90.05 (0.08)  87.70 (0.04)  94.90 (0.09)
DGI 75.35 (0.14)  83.95 (047)  91.61 (0.22)  92.15(0.63)  94.51 (0.52)
GMI 74.85 (0.08)  82.21(031)  90.68 (0.17) OOM OOM
MVGRL 77.52 (0.08)  87.52(0.11)  91.74(0.07)  92.11(0.12)  95.33 (0.03)
GRACE 78.25 (0.65)  88.15(0.43)  92.52(032)  92.60 (0.11) OOM
GCA 7830(062) 8849 (051) 9299 (027) 92.76 (016)  OOM
CCA-SSG |[77.88 (0.41)  87.01 (0.41) 9259 (0.25) || 92.77 0.17)  95.16 (0.10)
BGRL 79.60 (0.60)  89.23 (0.34)  93.06 (0.30) || 92.90 (0.15)  95.43 (0.09)
RGRL 80.29(0.72)  89.70(0.44) 93.43 (031)|[ 92.94(0.13) 95.46(0.10)

Performance on node classification tasks

Dataset with less informative features
—> Large improvements in performance
- External self-supervisory signals from other nodes help RGRL to learn from less informative features

Dataset with more informative features
- RGRL is more robust than BGRL as the quality of input features get worse

Acc. of BGRL & RGRL (%)

RGRL
CS

—— BGRL
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40 g0
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0.0 0.5 0.9 0.950.990.995
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Classification accuracy over feature sparsity

0.0 0.5 0.9 0.950.990.995

[
o
o
)

80

60

40
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Experiments: Qualitative Analysis

Query Top-1 # Co-authored 5
Author lifodel Similar Author Papers L
Jiawei BGRL Ke Wang 14 X
Han RGRL Xifeng Yan 87 4
Christos | BGRL | Tina Eliassi-Rad 21 X
Faloutsos | RGRL | Hanghang Tong 47 4
Query Model Top-1 # Co-authored Research
Author — Similar Author Papers Keywords
Jiawei BGRL Zhou Aoying 0 Query Processing
Han RGRL Ee-Peng Lim 0 Data & Text Mining
Christos | BGRL | Michael J. Pazzani 0 Machine Learning
Faloutsos | RGRL David Jensen 2 Machine Learning

Case 1) Which author is the most similar?

- RGRL discovers author who have more co-authored papers
- RGRL discovers former Ph.D. students of the query author
- Advisor-advisee relationship
— Core relationship in the academia network!

Case 2) Which author will co-work in the future?

- RGRL discovers author of more relevant research area
- RGRL discovers author who actually co-authored in the past
(but missing in data)

RGRL discovers core relationship and meaningful knowledge that is not revealed in the given graph
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Thank you!

= Today: Self-supervised learning on Graphs
- [AAAI'22] Augmentation-Free Self-Supervised Learning on Graphs = Augmentation-free

 [CIKM’22] Relational Self-Supervised Learning on Graphs = Augmentation-invariant relationship

= Other topics that my group is working on:
« Long-tail problem on graphs
« GNN-based material (chemical) property prediction (Material science)
 Adversarial robustness of GNN
« Dealing with noisy features on graphs / Few-shot learning on graphs
« Continual learning on graphs
« Anomaly detection on graphs
« GNN-based scRNA-seq clustering (Bioinformatics)
- Scene graph generation
« GNN-based material (chemical) property prediction (Material science)
- Recommender system



