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Research area craphs are everywhere!
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Social Network Internet of Things Road Graph Financial Graph Molecular Graph

- Many problems in our real-life can be modeled as machine learning tasks over large graphs

- Our goal is to use graph as a tool for solving real-world problems by applying graph mining techniques



Introduction

= A molecule can be represented as a graph
- Atom in a molecule: Node in a graph

- Bond in a molecule: Edge in a graph

= Graph machine learning is widely being applied to chemistry / materials science

= Graph Neural Network learns how to propagate messages between nodes

« Variants of GNNs

« Graph Convolutional Networks
- Graph Attention Networks
- Message Passing Neural Network
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Introduction: Molecular Property Prediction

» Predict the properties of a molecule

————————————————————————————————

Features

- Reaction Rate

- Pressure

- Bond Type

- Activation Energy

- Stoichiometry

- Bond Energy

- Intermolecular Forces

\ - Temperature -
M e e e e . 2 Graph Neural Network

— Prediction
ex) Band gap, DOS, Fermi

e e e e - - - e e -




Introduction: Molecular Relational Learning

» _earn the interaction behavior between a pair of molecules

- Examples
- Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react
« Predicting solubility when a solute and solvent react
- Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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Outline

= Qverview

= Node-level Network Embedding
- Random walk-based Node Embeddings (DeepWalk / node2vec)

= Graph Neural Network (GNN)
« Graph Convolutional Neural Network (GCN)
- Graph Attention Network (GAT)
 Relational GCN
« GraphSAGE
- Deep Graph Infomax (DGI)
« GNNs with Edge Embeddings



Machine learning on graphs

Classical ML tasks in graphs:

= Node classification
 Predict a type of a given node

= Link prediction
« Predict whether two nodes are linked

= Community detection
- Identify densely linked clusters of nodes

= Network similarity
« How similar are two (sub)networks

Link Prediction
(Friend Recommendation)

1



Machine learning on graphs
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Machine learning in general

= Machine Learning = Representation + Objective + Optimization

Raw data

Representation
Learning

=

Machine Learning
System

Good Representation is Essential for
Good Machine Learning

Yoshua Bengio, Deep Learning of Representations, AAAI 2013 Tutorial
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Traditional feature extraction for images

= Fixed/Hand-crafted Feature Extractor
. Hand-crafted feature
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- Based on Yann Lecun’s slides

- Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110. 14



Machine (Deep) learning based representation learning

= Multiple layers trained end-to-end

Low-Level Mid-Level | | High-Level Trainable
Features Features Features Classifier

Based on Yann Lecun’s slides
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Traditional graph representation

ABCDETFGHI
AlO0O1 1100 0000 PrOblemS
B 0 001 0 0 :

1 0110 = Suffer from data sparsity
Cl100100100
Df101000110 = Suffer from high dimensionality
E(fo1 0000001 _ _ ,
Flo1000000 0 = High complexity for computation
G100 1100000 = Does not represent “semantics”
H{00 0100000
1{00 0010000 .

Adjacency matrix

How to effectively and efficiently represent graphs is the key!
— Deep learning-based approach?

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml 16



Challenges of graph representation learning

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

- RNNs for text/sequences ...

W o000
= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)

- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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Typical tasks

= Node-level prediction
= Edge-level prediction

= Graph-level prediction

Graph-level

18



Typical tasks

= Node-level tasks (or edge-level tasks)

Node label classification, including node-level anomaly detection
Node label regression

Link label binary classification, i.e., link prediction

Link label multi-class classification, i.e., relation classification

)

> Social network analysis (e.g., demographic info prediction)
> Spam / fraud detection (e.g., transaction networks)

> Link prediction (e.g., social networks, chemical interaction
networks, biological networks, transportation networks)

> Knowledge graph population / completion / relation reasoning
» Recommender system (bipartite graphs, hyper-graphs)

®
U]

T ( S—

(

Users

ltems




Typical tasks

= Graph-level tasks O\g/
« Graph label classification assification
G N N @ g: regfrles:ion

« Graph label regression CC(=0)0C1=CC=CC=C1C(=0)0 =
Input: SMILES of a molecule

» O

Molecular property

Molecular vector (label or real value)

$

» Molecular property prediction

» Drug discovery
» Scene understanding (i.e., objects graph)




Outline

= Node-level Network Embedding
- Random walk-based Node Embeddings (DeepWalk / node2vec)

21



Recall: Machine learning on graphs
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Graph representation learning

= Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original
network

= Similar nodes in a network have similar vector representations

Node Vector Tasks
fiu—> R4 iy . ’ > | » Node c!assmcatlon
R « Clustering
O Feature representation, - Link prediction
embedding .
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Node embedding

= Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

" ENC(u)

= Two things to consider
« 1. How to encode nodes?

encode nodes

« Encoder

« 2. How to define similarity in
the embedding space?

« Decoder (Similarity function)

Original graph Embedding space
(Latent space)



Encoder

= Maps each node to a low-dimensional vector

d-dimensional embedding vector

ENC(v) =z, <
/

Node in the input graph

= Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)
Z € RV
ENC(U)=ZU=Z'U ex) node 4

v e WVl /

embedding vector for a

\

0
embedding specific node 0
mat\rix / A 0 Each node is assigned a unique
_ Dimension/size v = 1 embedding vector (i.e., we directly
7 = ~ of embeddings 0 optimize the embedding of each node)

d N
/ 0
0

\\’// ’
one column per node | V|



Decoder (Similarity function)

= Specifies how the relationships in the original graph map to relationships in embedding space

Relationships in the original graph
similarity (u,v)

Similarity between
node u and node v in
the original network

2

Relationships in embedding space

ZyZy,

Dot product between
embeddings of node u
and node v

26



Encoder + decoder framework

= Encoder: Embedding look-up (Shallow model)
- Deep encoders (GNNs) later in the lecture

= Decoder: Based on dot product

Original graph

Objective

Maximize z! z,, for node pairs (u, v) that are similar

= How can we define node similarity?

= Possible choice
« Are two nodes linked?
« Do they share neighbors?
« Do they have similar structural roles?

Embedding space
(Latent space)

27



What is Random walk?

= Given a graph and a starting node,
« 1. Select a neighbor of it at random,

« 2. Move to this neighbor
« Repeat 1,2

= Example of random walk
- Start>52>28>9>8~>11

« (Random) Sequence of nodes

10




Random walk-based node embeddings: overview

= |dea: Learn node embedding such that nearby nodes in the graph are close together in the embedding space

= Q. Given a node u, how do we define nearby nodes?

= A. Through random walk!

= Step 1. Estimate the probability of visiting node v = Step 2. Optimize embeddings to encode these
on a random walk starting from node u using some random walk statistics
random walk strategy R . e.g., If two nodes co-occur, maximize their similarity

PR(’U|u) cf) Dot product = cosine similarity, if
node embeddings are unit vectors

Why random walk?
Random walk can reflect both local and high-order neighborhood information 29



Random walk-based node embeddings: Detailed algorithm

= Given: G = (V,E)
= Goal: To learn a mapping function f:u — R% foru € V

- f(u) =z, € R

= Step 1: Run fixed-length random walks starting from each node u in the graph using some random walk
strategy R

= Step 2: For each node u collect N;(u), the multiset of nodes visited on random walks starting from u
« Ngp(u): Neighboring nodes of node u under random walk strategy R

= Step 3: Optimize embeddings according to the following objective
- Objective: Given node u, predict its neighbors N (1)

m}gx Z log P(Ng(u)|zy,) (Maximum likelihood objective)

uev

Given node u, we aim to maximize the probability of its neighboring nodes

i.e., we want to learn embedding of node u that is predictive of its neighboring nodes

3(




How to define neighboring nodes?

Random walk strategy

Example sequence

Window size=2

a—->b->c-ovi>d-oe—>f

ai»b—>c—>vi—>d—>ei—>f

Center node

Neighborhood

(%]

Ngr(v;) = b,c,d,e

3



Random walk-based node embeddings: Optimization

Equivalent

mjnglogP(NR(u)lzu) ‘ L=Z z —log(P(v|zy))

uev U€EV veNRg(u)

= Intuition: Optimize embeddings z,, to maximize the likelihood of random walk co-occurrences

= Approach: Parameterize P(v|z,) using softmax

exp(z;,Z,)
P(v|z,) =
“ ZjEV exp(zﬂzj)
T
exp(zyZy) —— ,
L= 2 z —log(z S— )) Optimizing random walk embeddings
UEV VENR (1) jev SXPlZuz; = Finding embeddings z,, that
Sum over Sum over nodes v seen Predicted probability of minimizes the loss L
all nodes u on random walks u and v cooccurring on

starting from u random walk
32



Negative sampling

- 0(|]V|?) complexity

e e ) . - We can approximate this normalization term
= But, optimizing the loss L is expensive!

_ exp(zyzy)
29N) Tl @iz

UEV VENR (U)

exp(zﬂzv) k
lo ~ log(a(zlz,)) — 2 log(a(zz:)), j~P
g(ZjEVeXp(ZEZj)) g( ucv ) =1 g( ( u ])) ] %

1 https://arxiv.org/pdf/1402.3722.pdf
(Sigmoid function)

) O'(X) = 1+e™*
« Makes each term a “probability” between 0 and 1

« P,: Random distribution over nodes

= Instead of normalizing w.r.t. all nodes, just normalize against k random “negative samples” j

= How do we sample from Py, to help the training process?
- Sample k negative nodes considering the degree of each node

33



Random walk-based node embeddings: Optimization

= After we obtained the objective function, how do we optimize (minimize) it?

L=) ) —log(P(vz)

Uu€eV veNg(u)

= Gradient descent: A simple and the most common way to minimize L
« Step 1: Randomly initialize z; foralli € V

- Step 2: Iterate until convergence
oL

« Foralli € V, compute the derivative w.r.t. the loss L, i.e., Fy
l

* Foralli €V, update z; < z; — 15—
l

= Stochastic Gradient descent: Instead of evaluating gradients over all examples, evaluate for a single node
« Step 1: Randomly initialize z; foralli € V

+ Step 2: Iterate until convergence: L™ = 3 .,y —log(P(v|z,))

aL®
! aZj

« Sample a node i, for all j € Ny (i) compute the derivative w.r.t. the loss L, i.e.

aL®
-1
62j

- Forall j € Ng(i), update z; « z;




Random walk-based node embeddings: Summary

= Step 1: Run fixed-length random walks starting from each node u in the graph using some random walk
strategy R

= Step 2: For each node u collect Ni (1), the multiset of nodes visited on random walks starting from u

= Step 3: Optimize embeddings according to the following objective using Stochastic Gradient Descent
- The optimization can be made efficient through negative sampling technique!

B B exp(zﬂzv)
L‘E 2 ~log(P(vlzu) _2 z _log(ZjeVeXp(ZZLZj))

UEV vENR(U) UEV vENRg(u)

= So far, we have discussed about how to optimize embeddings given a random walk strategy R
- Different random walk strategies make different Ny (1)

- What strategies are there?
« 1. Idea of Deepwalk [1]: Simple random walk (we talked about so far)

« 2.ldea of node2vec [2]: Biased random walk

[1] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations."” KDD 2014.
[2] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." KDD 2016.



Node2vec: Biased walks

= |dea: Use flexible, biased random walks that can trade off between local and global views of the network
« Deepwalk’s simple random walk mainly focuses on the global view

—>BFS (Breadth First Search)

—>»[DFS  (Depth First Search)

= Two strategies to define a neighborhood Ny (u) of node u: BFS and DFS

= Example: Walk of length 3 from node u
« Ngps(u) = {s4,5,,53} Local microscopic view
« Npps(u) = {s4,S5,5S¢} Global macroscopic view

BFS DFS

How can we interpolate between BFS and DFS?
36



Node2vec: Interpolating BFS and DFS

Same distance to s
= Biased fixed-length random walk R starting !

from node u generates neighborhood N (u)

Farther from s4

= Two parameters to control the interpolation
* Return parameter p

+ Return back to the previous node Back to 54 Dt 1/6] Farther from sy
 In-out parameter q ‘ﬁs
« Moving outwards (DFS) vs. inwards (BFS) u

« Intuitively, q is the “ratio” of BFS vs. DFS

Current situation
-  Random walk that started from node u just traversed
edge (s{,w) and is now at w
- At this point, neighbors of w can be 54, s,, 53 or s,

Idea of biased random walk
Remember where the walk came from!

37



Node2vec: Details of biased random walk

= Main idea: Move to neighbors considering where the walk came from

Dist. (51, t)

NN -

. Target
Same distance to s -
! Farther from s4 neighbor
S1
w mmp| 2
S3
Back to S:KJ 1/q Farther from s, Sy
S

= p, @ model transition probabilities (1/p, 1/q, 1 are unnormalized probabilities)
. p:return parameter

 ¢: walk away parameter

= BFS-like walk: Low value of p

= DFS-like walk: low value of g

= Nr(u) are the nodes visited by the biased walk

38



Outline

= Graph Neural Network (GNN)

Graph Convolutional Neural Network (GCN)
Graph Attention Network (GAT)

Relational GCN

GraphSAGE

Deep Graph Infomax (DGI)

GNNs with Edge Embeddings

39



Recall: Encoder

= Maps each node to a low-dimensional vector

d-dimensional embedding vector

ENC(v) =z, <
/

Node in the input graph

= Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

ax|v|
ENC(U)=ZU=Z'U ZER ex) node 4

v e WVl /

This lecture: Deep encoder

\

embedding vector for a 0 Each node is assigned a unique
ng v . ) ,
embedding specific node 0 embedding vector (i.e., we directly
mat\rix / h 0 optimize the embedding of each node)
. Dimension/size v = 1
Z= <  of embeddings =%
d 0
0

,\\’/, /
one column per node | V| 20



Deep graph encoder

= Deep Encoder = Graph neural network (GNN)

Shallow model

ENC(v) = z,

¥

Deep model

ENC(v) =

Multiple layers of non-linear
transformations-based
on graph structure

Graph
convolution

Hidden layer

Graph
convolution

Hidden layer

Node embedding
Graph embedding
Subgraph embedding
Edge embedding

Can we use existing deep learning models? e.g., CNN, RNN, etc

41



Challenges of graph representation learning

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

- RNNs for text/sequences ...

W o000
= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)

- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019

42



Background: Convolutional neural networks for images

= Convolutional filters
« Local feature detectors

- A feature is learned in each local receptive field by a convolutional filter

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 /—M
(SI)'(dS) k:‘r:el Max-Pooling (5 I)'(dS) ks;r.mel Max-Pooling (with
valid padding (2x2) valid padding (2x2) — /& \dropout)
/ ) / \ / J / J 5 :///:;7.7(/7’;5, 0
1
2

INPUT nl channels nl channels n2 channels n2 channels |

(28 x 28 x 1) (24 x 24 x nl) (12 x12 x nl) (8x8xn2) (4 x4 xn2)

@9

n3 units

(Figure credit) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN on an image

O—0—0—®

OUTPUT




From images to graphs: Local receptive field on graphs

= How should we define local receptive fields on graphs?
« Local subgraphs

Image Graph

Graphs look like this

= There is no fixed notion of locality
or sliding window on the graph

= No order among neighboring nodes
« Permutation invariant

= |dea: Transform information from the neighboring nodes and combine it

- Step 1: For each node v;, transform “messages” from neighbors N (i)

« Wjh; for v; € N(i), hj: “Message” from v;
- Step 2: Add them up: ZvjEN(i) W;h,;

(Figure credit) https://deepgraphlearning.github.io/coursewebsite/schedule




Graph Convolutional Network (GCN)

= |dea: Node’s neighborhood defines a computation graph
- Messages contain relational information + attribute information

Determine node Propagate messages and
computation graph transform information

Learn how to propagate information across the graph to compute node features

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017



GCN: Neighborhood aggregation

= Generate node embeddings based on local network neighborhoods

= Neighborhood aggregation
« Nodes aggregate information from their neighbors using neural networks

- Every node defines a computation graph based on its neighborhood

Neighborhood
TARGET NODE Aggregation

0“
*
*
*
*
‘O
*
*
*
*
‘0
*
“‘
*
“

.4-

Input graph
put grap Neural networks

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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= Things to consider

« 1. What kind of neural
network?

« 2. How do we aggregate
neighboring nodes?




GCN: Basic approach

= 1. What kind of neural network?

 Simple multiplication of weight matrices|(B and W

= 2. What kind of aggregation?
Average

|
h,(,l+1) 5

Initial embedding of v

hé =.\

Z, = h,(,L)

Final embedding of v

Feature of node v

N e ® %N o
n2% i
Vad i .4 %%t: é¢
® Lo L -‘® .. e ..
CYY'Y T ® [ 1

Weight matrix

/\ Embedding of v atlayerl  Total number of layers

, o0
Z IN(v)]

UeN (v)

<
oy
m
~
o
=

JL-1)

N

Average of neighboring nodes’

previous layer embeddings How do we train the
embeddings?

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GCN: Matrix formulation

= GCN can be efficiently computed in a matrix form

(1+1) A
hv =0 Wl Z L
ey IN(v)]
D 1AH®

HD = g(AHOWT

d

Neighborhood aggregation

hd=x,, z,= h,(,L)

+ B,hY
) leo1, ., L—1)

(Matrix form)

where 4 = D~14

Since 4 is sparse, sparse matrix multiplication
can be used (efficient)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

.%:& .% &.
o ®
Ymw N
o :mf.;‘c %ee o0°
H&-1D
(k—1)
<—| hi
Z h) = A,H®
UEN (v)
D~* D,, =Deg(v) = |[N(v)|
_ 1
/D 1 D—l —
— " T"TINW)




GCN: Training

= We need to define the loss function on the embeddings
= We can feed the final embeddings z,, into any loss function and run SGD to train the weight parameters

= Types of loss function: 1) Supervised loss, 2) Unsupervised loss

= 1) Supervised loss

min > L0, f3(2,))

vev
 y,,: Label of node v

* fg: Classifier with parameter 6
« L could be squared error if y is real number (regression), or cross entropy if y is categorical (classification)

= 2) Unsupervised loss

 No node label available mgn Z L(Ay . fo(2y,2y)) fo: Encoder

« We can use the graph structure as the supervision e
 e.g., adjacency information '
* In this case, L is cross entropy (4, = 1 if an edge exists between node v and node u, otherwise 0)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GCN: Supervised training

= Directly train the model for a supervised task (e.g., node classification)

Adjacency matrix

A
Z
R > ) 9-f@)
X Y - .

'?. Node embedding Prediction

? matrix

E

Attribute matrix Partial label

L== ylogfo(z,) + (1= y,)log(1 - fo(z,))

Ground truth label Model prediction

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017



GCN: Unsupervised training

= As we are not given node labels, we define our task to reconstruct the graph, i.e., Adjacency matrix

Adjacency matrix

A
L] (= 7
=) - .
X B
T Node embedding
matrix

Attribute matrix

L=- z Ay logfo(zy,2y) + (1 - AV,U) log(1 — fo(zy, 2u))

v, uev

Ground truth label Model prediction

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

51



Graph Attention Networks (GAT) (1/3)

= |dea: Treat different neighboring nodes differently

)
(1+1) . (D l h
UeN (v)uv ]‘ UueN(v)
Attention weight

* y,y,: Importance of node u to node v as its neighboring node

= |n GCN, the importance was heuristically defined based on the structural property of the graph (node degree)

Apy = IN(v)I: Does not depend on the neighbors (it is fixed)

- All neighboring nodes u € N(v) are equally important to node v

Not all neighbors are equally important!

Velickovi¢, Petar, et al. "Graph attention networks." ICLR 2018 52



Graph Attention Networks (GAT) (2/3)

= |dea: Treat different neighboring nodes differently

(I+1) _ jh(l)
hv =0 Wl Tyulty * y,,: Importance of node u to node v as its neighboring node

UeN (v)uUv ]‘
Attention weight PR I h(l—l)
€aB 5
= Computing the attention weight R
(l—l)ﬂ-'A
_ (D (D (Importance of node u’s hA
Cyu = a(Wlhv ) Wlhu ) message to node v) /
0. = exp(eyy) N ization)
vu — ormalization
ZkeN(v) exp(eyk) (1-1)
eap = a(Wi_q yWi_1hy )

How do we define a(-)?

Velickovi¢, Petar, et al. "Graph attention networks." ICLR 2018



Graph Attention Networks (GAT) (3/3)

__ exp(ew)
Qiken(v) €XP(evk)

avu
= Defining the function a(-)

ey =E{Wlh1(yl)' Wlhg)) (Importance of node u’s message to node v)

. l l
=|Linear(Concat (Wlh,(, ), Wlhg)))
Parameters of Linear layer is jointly trained

end-to-end with other parameters of GAT

= Multi-head attention (introduced in Transformer)
« Create multiple attention scores using multiple copies of parameters

h,(,l)[l] =0 (Wl 05[1]h(l)> l l l l
wehGor B = AGG(Y[1], h{" 2], ki [3])
) _ [2] 4, (D)
h,’[2] =0 <Wz 2 a, hy, ) » The final embedding aggregates the outputs
ueN (v)uv of multi-head attention

hf,”[3]=a<wl > aLi’Jh?)

ueN (v)uv



R-GCN: RELATIONAL GCN

= Knowledge graph is a type of multiplex network

usa )

‘ /,'
1,8“/

o\\

educated_at
[ Mikhail Baryshnikov ] {

%‘

Vaganova Academy ]

- Nodes are entities, the edges are relations labeled with their types [_ Vilcek prize ]

_rel_1(in) —

_ rel_1(out) —

_ rel_ N(@{n) —

— rel_ N(out)

rel_1

_— self-loop —,

~ self-loop
.

Schlichtkrull, Michael, et al. “Modeling Relational Data with Graph Convolutional Networks.” ESWC 2018

Ce

1+1 h(l)

K = 6| w, Z + B,R® (GCN)
IN(W)|
UeN(v)

» 10

At = 5 Z wT 2 — 4 g,h%Y | (R-GCN)
IN(v)I
TER UueN (v
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GraphSAGE (1/2)

= Generalization of GCN/GAT
 So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

Average of neighboring nodes Add self representation Attention weight

)
h (1+1) _ 0

A = 6w, Z Wu)l + B,y hy = =a(W, Goufty

1%
ueN(v) uEN(v)Uv
GCN GAT
Generalized representation \ Generalized representation

GraphSAGE D = 5 ([Wz -@({hﬁ)lu c N(v)}) B, hg)})

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurlPS 2017




GraphSAGE (2/2)

= Generalization of GCN/GAT
 So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

Generalized representation
\ (Concatenation here)

100 = o (w, G0 v}l

Generalized representation

= Variants of AGG
« Mean: Same as GCN

3%
UEN(v) INW)|

« Pool: Transform neighbor vectors and apply symmetric vector function
- AGG=y ({MLP(hI(PNu € N(v)}), where y is element-wise mean/max/min
« LSTM: Apply LSTM to shuffled neighbors
+ AGG = LSTM (|h{|u € z(N (v)) )

- AGG =)

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurlPS 2017 o7



A GNN layer: Overview

= GNN layer = 1) Message + 2) Aggregation
= Compress a set of vectors into a single vector

= Different types of GNN layers
« GCN, GraphSAGE, GAT, ...

0y

h
(1+1) _ u )
(GCN)  h, —a(Wl E |N(v)|+Blh”>

UEN (v)
l
mhﬁ)

Gar) AV =g (Wl

UeEN (v)uv

(GraphSAGE) hg“) =0 (lWl - AGG ({h8)|u € N(v)}) ;Blhl(Jl)])

TARGET NODE Node v

= (2) Aggregation
/ & o ¢ (1) Message

INPUT GRAPH . .

= (1) Message computation

- Message function: mfp = MSGW® (hg))

- Example: A linear layer mg) = Wlhg)

= (2) Aggregation

+ hY = AGG ({mP|u e N)})
« Example: SUM(), MEAN(), or MAX() aggregator
. hl(,l) = SUM ({mg)lu € N(U)}) = ZuEN(v) Wlhl(tl)

_ )
- ZuEN(v) m,
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Inductive capability of GNN

= Inductive learning: We can obtain embeddings for nodes that have not appeared in the training time

- e.g., In Amazon, new users are consistently added to the system, and it is impractical to re-train the system to get
the embeddings for the new users

Zy
| e | o
AN NI Y

AN
| <\
— — —
l - | e | rd
Generate embedding
Train with snapshot New node arrives for new node

= This is possible because we do not train an embedding matrix as done in Deepwalk/node2vec

. ®
= |nstead, we train aggregator and transformer - — fro,
‘0 o M B " %
‘ i ‘ shared parameters ‘
coe ® e o0°°

Compute graph for node A Compute graph for node B



Background: Mutual Information (Ml)

Measures the amount of information that two variables share

If Xand Y are independent, then Pyy = PxPy —> in this case, Ml =0

P
I(X;Y) = Ep,, [log o ]
XY

= DKL(PXYHPXPY)

High MI? = One variable is always indicative of the other variable

Recently, scalable estimation of mutual information was made both possible and practical through Mutual
Information Neural Estimation (MINE) [1]

Belghazi, Mohamed Ishmael, et al. "Mutual information neural estimation." ICML 2018



Background: Deep infomax

= Unsupervised representation learning method for image data

= |ntuition: Maximize mutual information (Ml) between local patches and the global representation of an
image

M x M features M x M Scores

“Rea|”

Local feature (+)

T N7 M
........... » \
— M Discriminator tries to discriminate
Global feature
between “Real” and “Fake”
“Fake”
... —
— Local feature (-) M
M

M x M features drawn from another image

Deep Infomax (Hjelm et al, 2019)

Hjelm, R. Devon, et al. "Learning deep representations by mutual information estimation and maximization." ICLR 2019



Deep Graph Infomax (DGI) (1/2)

= Deep Graph Infomax (DGI) applies Deep Infomax on graph domain

= Unsupervised graph representation learning method that considers node features

= Notations
« X ={Xy,X,, ..., Xy }: A set of node features (N: num. nodes)

- A € RV*N: Adjacency matrix

 Learna GCN encoder  &£(X,A) = H ={hy,ha,...,hn} h; € R
- Generates node representations by repeated aggregation over local node neighborhoods

—

« h; summarizes a patch of the graph centered around node i (= patch representation)

Analogy: Local patch representation in an image == Node representation in a graph

Velickovic, Petar, et al. "Deep Graph Infomax." ICLR 2019
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Deep Graph Infomax (DGI) (2/2)

= Unsupervised training of GNN considering the local and global structure of the graph
EX,A) =0 (f)—%Af)—%X@)

=1

)]+ Sk [ (1 @,g))])

J=1

Maximizes the mutual information between the local patches and
the graph-level global representation

Velickovic, Petar, et al. "Deep Graph Infomax." ICLR 2019



https://www.youtube.com/watch?v=mdWQYYapvR8

GNNs with edge embeddings

= Motivation: Edges may also contain attributes
- e.g., contents of papers written together by two authors

( Legend: [: Node embedding [Hll: Edge embedding —: MLP |

Node-to-edge (v—e€) Edge-to-node (e —v)

v—e hl-,j) = fé([hﬁ,hé,xa,j)])

1

e— : h2-+1 = fql)([zze_/\/‘] hli,j)7xj])

Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML 2017
Kipf, Thomas, et al. "Neural relational inference for interacting systems." ICML 2018
Gong, Liyu, and Qiang Cheng. "Exploiting edge features for graph neural networks." CVPR 2019.


https://www.youtube.com/watch?v=mdWQYYapvR8
https://www.youtube.com/watch?v=mdWQYYapvR8

Conclusion

= Qverview

= Node-level Network Embedding
- Random walk-based Node Embeddings (DeepWalk / node2vec)

= Graph Neural Network (GNN)
« Graph Convolutional Neural Network (GCN)
Graph Attention Network (GAT)
GraphSAGE
Deep Graph Infomax (DGI)
GNNs with Edge Embeddings
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Papers

= Material property prediction
« Neural message passing for quantum chemistry. ICML 2017
« Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. NeurlPS 2017

« Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett.
2018

« Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019

« Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry
Chemical Physics 2020

« Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
« Predicting Density of States via Multi-modal Transformer. ICLR Workshop 2023

= Extrapolation
« How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
* Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022



Molecular Graphs

= Molecules can be represented as a graph with node features and edge features
- Node features: atom type, atom charges...

- Edge features: valence bond type...
- However, sometimes, we also know the 3D positions x;, which is actually more informative
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DFT Targets
Message Passing Neural Network ~10° seconds |Ewo, .

Message Passing Neural Net
= Unified various graph neural network and graph convolutional S =
network approaches ~ 1072 seconds

Edge embedding

hy,.
t+1 t t
Wi m,' = = E My (h,, b, epw)
| My, Py, €ow,) weN(v) Neighbor of v
" 1 t ¢4l
/ \ hfj—i_ — Ut(hv) mv+ )
Wz W3



Geometric Graphs

= A geometric graph G = (4, S, X) is a graph where each node is embedded in d-dimensional
Euclidean space:

« A:an nXn adjacency matrix
. S € R™: Scalar features (atom type, atom charges, ...)
- X € R™*4: tensor features, e.g., coordinates

4



Broad Impact on Sciences

= Supervised Learning: Prediction
 Properties prediction

3D Protein-ligand interaction (binding)

Geometric g Geometric

N o
GNN Prediction

* Functional properties?
* Ligand binding affinity?

* Ligand efficacy?
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(a) Xto X’tx

Learned simulator, sg

Broad Impact on Sciences

®) ENCODER PROCESSOR DECODER
_ . o — Jo 9 e 1
- SuperVISEd Learnlng' StrUCtured PrEdICtlon (©) Construct graph Pass messages (e)  Extract dynamics info
« Molecular Simulation ¢, _ «J e e ! ..
¢ ¢ X ¢ V? ¢ Vi _>\ ¢ V;'nJrl VzM _>g ¢ Yi
¢ ¢ ¢ ¢ ¢ $Y—¢ ¢ ¢ ¢ ¢ ¢

Current 3 Geometric
State GNN

A

Dynamics
Simulator

Surface mesh Underlying particles

Particle representation
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Broad Impact on Sciences

= Generative Models
« Drug or material design

Geometric
Graph

. Geometric
GNN

Generative
Model

_ Geometric
Graph

74



Why is it hard?

= To describe geometric graphs, we use coordinate systems
(1) and (2) use different coordinate systems to describe the same molecular geometry.

= \We can describe the transform between coordinate systems with symmetries of Euclidean space

. 3D rotations, translations ) (2)
¥ N

However, output of traditional GNNs given (1) and (2) are completely different!
- Enforcing symmetry is crucial (Invariant GNNs)

7%



Schnet: Overview

= Input
- Feature representations of n objects X! = (i, ..., %) with x} € RF
« Atlocations R = (4, ...,1;,) with r; € RP (D = 3 for 3-dim coordinates)

= Qutput

OF
+ Molecular total energy E(ry, ...,T4,) Fi(r1,...,1p) = —

—r1,...,n).
81'1'( 1 )
- Forces F = (14, ...,Ty,) acting on each atom

= SchNet updates the node embeddings at the [-th layer by message passing layers

1

<!t — (Xl * Wl)z = ng o Wl(l‘i — I'j),
J

x!: node embeddings at 1 layer
r: atomic coordinates

- A filter generating function W': RP — RF is determined by
the relative position from neighbor atoms j to i

o is the element-wise multiplication
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Schnet: Invariance

= ¥/ is invariant by scalarizing relative positions with relative distances (||rl- — r]” = ||rij|| = d;j)
* |Iri;1| is invariant to rotations and translations

» Hence, each message passing layer W' is invariant

- Aggregated node embeddings ng oW'(r; — ;) s invariant
j

- Node embeddings are invariant!

= Since d;; is 1-dimensional, we expand to a higher dimension (i.e., 300-dim) via radial basis function
ex(r; — r;) = exp(—[|dij — pxl®)

* Uy is chosen every 0.1A within 04 < u < 30Aandy = 104
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Crystalline Materials

Molecules

Crystals
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Crystal Graph Convolutional Neural Networks (CGCNN)

T
Ll
Rl QAR DN

= Goal: Predict material properties of periodic crystal systems R —— ——

= |dea: Represent the crystal structure by a crystal graph that encodes both atomic information
and bonding interactions between atoms (Distance between atoms = Edges in a crystal graph)

Undirected multigraph
Multiple edges between the same pair of nodes
- Considers lattice periodicity

Asymmetric unit

R Conv L, hidden Pooling L, hidden

79



u [T State attributes Outputs
Vst Bond attributes New state attributes

I e u'
MatErials Graph Network (MEGNet) [ e mmmmm MEGNet Ennnnn i)
Tk /
- e, NN
Cv Atom attributes New atom attributes
o V; [T IIIIT11] v, I
" Motivation G = (B, V,u) G = (B V' )
- 1) Existing work either on molecular and crystal datasets (solved by adopting graph networks)
- 2) Global state (e.g., temperature) of each molecule/crystal is overlooked
« Important for predicting state-dependent properties such as the free energy
= Considers topological distance and spatial dlstance (Manual features)
1 62{ )
V= {e}n—i N
MEGNet Block Model

e§c:¢e(vsk@vrk@ek@u) o ¢ k=1' ﬁ”zmz{vﬁ} CNEEECEEE bbb

)
|
w=o (v @uwPu) |
MEGNet update steps ! ‘;,3,"
| €
4 1. Update bond 2. Update atom 3. Update state\‘ ) : a P
8
l L 2
I 2 ®
= ic
|
|
|
|
\ Add
:\ [Eout] [Voutj (uout

80
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Input

GATGNN

Global information (GI) GI propagation Formulation
Graph’s elemental composition E Concatenation with node feature viP) = i) E
Node #’s cluster Fixed cluster unpooling v = )3} vj(ﬂ)
jeci
Random cluster unpooling v = v](p)BCb #Ci

Concatenation of graph’s pooled feature vector G,
node features, and one-hot encoding of node clusters

JjECy )
Vi) = G|viP| Ch

= Motivation: Existing studies do not effectively differentiate the contributions from different atoms
« Existing studies only emphasized on capturing local atomic environment

= |dea: Global attention (Global information — i) Entire crystal graph, ii) Crystal node’s location in graph)

[ 2N
® Crystal Material

Node Feature
Extraction

/ Augmented GAT Layer \

\ Batch Normalization /

GAT + edge information

== Encoded Element Composition
or Node cluster Information

Global
Attention

Global Information

Featurization

Context Vector

Node Feature Concatenation with
Composition Encoded Vector

Global Attention Mechanism

O mrm
L AN
» -

Context Vector . .
momm X >

Graph with Structure
aware node

<« 1ype 1 (ratio amount i
of each element
\Type 2
Global Hidden Output
Pooling Layers Type'l . ‘
» -
o
0
) e N
4 olle
g olle
O 8 8 Input
Ol mp | |O||C] | = ©
o olle
o o||e
8 Q@
19)
— . . Cluster-B
Type 2 ® -
[

Clustering Cluster-Pooling* Unpooling
Fixed
A
B A
A
Cluster-A B
i BJB| oc
.\\' B ” ) Context Vector
oY= ¢ = X
Ao "= Random
A y c§ s
“Cluster-C

Global Attention Mechanism

Graph with Structure
aware node

@ =g
[

> v




Symmetry

= Symmetry of Inputs
« We want our GNNs to see (1) and (2) as the same system though described differently
> Symmetry-aware GNNs (1)

= Symmetry of Outputs
- Beyond input space, output can also be tensors

« Example: simulation (force prediction)
« Given a molecule and a rotated copy, predicted forces should be the same up to rotation

* i.e., Predicted forces are equivariant to rotation oF
F;(ry,...,r,) = ~3 (r1,...,Tp).
r;
e Current __ Geometric  Next
‘},. State GNN State
vV A
Dynamics
Simulator

(2)
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Equivariance

= Formal definition of Equivariance
« Afunction F: X — Y is equivariant, if for a transformation p it satisfies:

Fop(x)=peF(x)

« The equation says that applying p on the input has the same effect as applying it to the output.

Definition of Invariance
- A function F: X - Y is invariant if for a
transformation p it satisfies:

Fop(x)=F(x)
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3D Translation

E(3)NN

= Motivation: Can we preserve all geometric information of the input? 3D Rotation:

= |dea: Apply Euclidean neural networks (Capture full crystal symmetry) mirrors

 Equivariant to 3D rotations, translations, and inversion
* (b) Node feature: Mass weighted one-hot encoding
* (c) Edge feature: Distance between atoms

3D Inversion

(a) (b) (c)
. ~ocgp e Oe I[..,16.00, ..., 0.00, ..., 0.00, ...]
@ Ti@ ..., o.00, ..., 22.00, ..., 0.00, ...]
St Losi 080 orom 0600 conw BTbRy ]

predicted ground truth

H_ /\’W H)"I @
-7

: - LN
T backpropagate

/max

R(|rab|)Y'lm(7/;ab)

embedding
=
ol
Il
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Density of States Prediction of
Crystalline Materials via Prompt-guidead
Multi-Modal Transformer



Density functional theory Source: Wikipedia
Article  Talk

Density Functional Theory (DFT)

Density-functional theory (DFT) is a co
chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the

ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory,
the properties of a many-electron system can be determined by using functionals, i.e. functions of another
function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the

= DFT calculations are used to determine the mechanisms of chemical reactions that are difficult to
experimentally determine by considering the movements and reactions of electrons within atoms

Primary DFT output Secondary DFT output Tertiary DFT output
Kohn- uation DOS, h hvsical
> Energy levels & Total energy & Other physica

[ Atomic Configuration ] atomic forces roperties
wavefunctions Prop

[ Machine Learning ]

» However, it is difficult and computationally expensive to compute DFT outputs based on
Kohn-Sham equation

= [n this work, we adopt GNNs to approximate Kohn-Sham Equation .,
to predict DOS

DO

Main assumption: DOS is related to a sequence of energy Energy (eV)
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Consider DOS as a sequence

= |dea: DOS prediction = Graph-to-Sequence task

Input : Crystal Structure

Graph » Seguence
Encoder Decoder

Graph-to-Sequence Model

DOS

|y

Energy (eV)

Output : Sequence
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Baseline methods

= Baseline 1 - CGCNN: Use Crystal Graph Convolution [1] to predict 201 DOS values at once

= Baseline 2 - CGGRU: Use graph embedding as the initial state of GRU and sequentially predict DOS given

energy embEddlngS 201 dimension vector DOS

MLP

DOS

-
d1N
-

JO1I3A UoIsuswWIp 10T

Energy embeddings

Baseline 1: CGCNN Baseline 2: CGGRU

= Performance: CGGRU > CGCNN (2% Gap in MSE) Challenge: Input types are different (Different modality)
- Modality: Graph # Energy

= Key Takeaways: Sequential modeling is important

- We need to explicitly capture the relationship between energies
- What about adopting Transformer?
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Multimodal transformer

» How can we perform machine translation given both image and text data?
« Multi-modal Machine Translation

- Multi-modal Transformer I
Output
Input 1
(In?age) : (Text) : Query T T Key Value
L Ein Vogel fliegt LLL LLOTT LI
=T iber das Wasser T \/’
INPUt 2 A bird flies (T (LI
(Text) over the water Text Image
Multi-modal Machine Translation Multi-modal Transformer

= Multi-modal transformer assigns Query, Key, Value for different modalities
 Query: Text
« Key, Value: Image

= We refer to the interaction between Query and Key, and combine with Value to get Query embedding



Preliminary: Prompt Tuning

= How to effectively fine-tune pre-trained models(LLMs) for downstream tasks?

- Prompt Design (e.g. GPT-3) _ -
ex) Sentiment Classification Task

Finetuning: “This movie was amazing!” = Positive
* Prompt design: Engineered prompt + Input text

- Fine-Tuning = Prompt Design = Prompt Tuning

Efficient Multitask Serving
Strong Task Performance ) A . . . .
: ’ \ | Is the following movie review | ., . . -
L N <+ "This movie was amazing!
Model Tuning Prompt Tuning Prompt Design pOS|t|Ve or negatlve !
(a.k.a. “Fine-Tuning”) (Ours) (e.g. GPT-3)
( Pre-trained Model ) Pre-trained Model Pre-trained Model Englneered Prompt InPUt text
@ Tunable & #* Frozen #* # Frozen #* .
| [ 1 i [ * Prompt tuning: Tunable soft prompt + Input text
(lala] CTTTTT] [eleele] [TTTT11]1
— M~ M~ Y
Input Text Tur;able StOﬁ Input Text Enpgineerted Input Text
romp romp . .
Our idea: There are 7 Widely known Crystal Systems
Tunable Soft-prompts P, € RP*¢ * i.e., Cubic, Hexagonal, ---, Triclinic
Concatenated [P,; X] € RWwHm)xe * Introduce 7 learnable prompts P € R”*%

= Incorporating structural information to the model by injecting prompts, not naively concatenating

N


https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html
https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html

Our proposed method: Prompt-guided DOSTransformer

= Query: Energy / Key, Value: Graph (Atom)
= \We determine which atom to focus on at each energy level for DOS prediction

= We utilize learnable prompts to guide the model to learn the crystal structural system-specific interaction
between materials and energies

Output p 8 5y GIobT
Decoder csys ot E! € RMxd Tﬁn € RMxd
sp-15p-1T
[ Energy Decoder I PI’O m ptS E%%% Softmax(E \/E_ ) € RMX
d
$glasys § lagior Softmax( ) € RM""
Multi-modal Transformer I _L
L3 X [ Cross-Attention Layer
1ELz,sys 1ELz.glob fr-t 1 Tﬁp—l fr-1 . §
L, X Self-Attention Layer -1 Mxd| T xd 2 E
$ e E'' e R H € R H § g
Lyx [ Cross-Attention Layer ] Mate,.a| Query 1 Key\/va'“e o :T:J
S Embeddmg E ©
I Atom € .g
Embedd —
mbedding QueryT Key\/VaIue % S
Energy Crystalline Material Fr-1 ¢ pMxaf f &
Embedding Encoder
1 - Illb
. . Esys E9lob 7]
Encoder SbPO, Energy embedding  Atom embedding ) { = [
Input

Proposed Model
(Prompt-guided DOSTransformer)



LSYS Lglob

[ Energy Decoder ]
1 EL3sys 1 EL3,glob

C RYSTA L E N CO D E R ( Multi-modal Transformer |

Lyx [ Cross-Attention Layer ) 1 Monoclinic
4 EL2sys 4 Elaglob
Ly X Self-Attention Layer {EED
. 4 EL 111
= Graph Network: graph-to-graph function | LX [ cross-Attention Layer | | IM
« Input: graph, Output: graph [ Ermbecding
- Structure of input and output are equivalent Enf;‘:;i{ng Crystalline Material

- MLP is used to represent node/edge/graph of the output
- Graph network can model the interaction between nodes
« We can stack multiple blocks of graph network

u — |-’
\ \Y pv—>u
m) ) —= ~V
\ pe—w pe—>u
E — d)e — E/
Edge block Node block Global block

Architecture of Graph Network block
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LSYS Lglob

[ Energy Decoder

PROMPT-GUIDED v T

MULTI-MODAL TRANSFORMER N =]

L, X Self-Attention Layer

= Cross-Attention

= Obtain crystal-specific energy embedding E* =a e )

L Embedding

4 )

4
I E! € RMxd

Softmax € RMxn
( 7 )

Y f
AR
NNSR

El-1l g RdeI T H € Rnxd H = SOftmaX(

E! = Cross-Attention(Qgi—1, K¢, Vi) € RM*4
El—lHT
Vd

JH,

Query T Key'\/ Value

Energy embedding Atom embedding
\§ J




PROMPT-GUIDED

MULTI-MODAL TRANSFORMER

= Global Self-Attention
= System Self-Attention with Crystal System Prompts

Glob
Sys T
. LT:P € RM*d
EP1EPTT
Softmax( T ) € RM X"I

g1 4 ter+ [gr &

5 =

-~ =

2 g

Q -

o <

- 1

Query T Key\/Value < %

= wv

33

£ o

2 0

> A

Ep-1 ¢ pMxd f v

1111

ESYs Eglob
11

Energy embedding

glob
ES =

sys __
Ej =

L
(L

L
(B

LSYS Lglob

Energy Decoder

fELg,sys 1 EL3,glub

Sum-pooled representation of crystal i
— glob
gi) Ef,-) :¢1<Ej )

gil[Pr) EY = ¢o(E}")

Learnable prompts representing one of the 7 crystal systems

EP = Self-Attention(Qg,—1, Kg,—1, Vio—1) € RMxd

Ep—l Ep— 1T
= Softmax (

JE"™!

Multi-modal Transformer |
Lz X [ Cross-Attention Layer ] 1 Monoclinic
f EL2.sys f E"Lz,glob D]j
L% Self-Attention Layer {
it N
Lyx [ Cross-Attention Layer ] ] Material
4 - Embedding
Atom
] Embedding
~ 2
Energy Crystalline Material — o
L Embedding Encoder ) b
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ENERGY DECODER

Predicted DOS of crystal i at energy level j

LSYS Lglob

Energy Decoder

fELg,sys 1 EL3,glub

Multi-modal Transformer

Lyx [ Cross-Attention Layer ]
t ELz,sys 1 ELz,glob
L, X Self-Attention Layer

Xz

LyX [ Cross-Attention Layer ]

Atom

)

1 Monoclinic
Mguin
gunnl

Material
Embedding

] Embedding

7

Energy Crystalline Material )
L Embedding

Encoder

Crystal-specific energy embedding of crystal i at energy level j

¢p'red(EL3, )

MLP for predicting DOS ¢, RY — R!

SbPO,
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Our proposed method: Prompt-guided DOSTransformer

= Using RMSE loss & 2 Forward Passes (System and Global energy embedding)

Total training loss Global loss  Balancing term

grotal — £glob 3+ L%Y%  Crystal System loss

% o GlObI
4 )
Output Lsys  pglob l E! € RMxd L‘sv € RMxd

Ep—l'p—lT
[ Energy Decoder J El-1HT Softmax( i ) € RMx
1EL3,sys 1EL3,gzob Softmax( 73 ) € RMxn
Multi-modal Transformer | I _L
L3 X ( Cross-Attention Layer J 1 Monoclinic
EL2sys 4 flaglob o0 fr-1 tir1 fp-1 5
LyX Self 1ttenti01 Layer =l T 5 g
2 - -1 deT T nxd H s 9
4 et LD:D E'"1eR HeR § 2
Lyx [ Cross-Attention Layer } Material Query T Kev\/Value g i’
- 4 < Embedding K] ]
I Atom "’E’ o
Embedding Query I Key Value 2
s 2 . v g o
Energy Crystalline Material |_ e Fr-1 ¢ pMxdd 4 s 1
L Embedding Encoder J '
‘ | [TT]
sys ob I
SbPO, Energy embedding Atom embedding | ESYS | E ]-‘E'!i .

Input
Proposed Model
(Prompt-guided DOSTransformer)



Result. In_distribution : Phonon DOS . Electron DOS
Vodel Phonon DOS Electron DOS Physical Properties (MSE)
10de p
MSE MAE  R? MSE MAE R? Bulk M. Band G. Ferm. E.
Energy X
MLP 0.346 0.112 0517 0.714 0.187 -0.146 0.720 1.425 5.039
(0.004)  (0.001)  (0.005) 0.013)  (0.001)  (0.050) (0.026) (0.166) (0.120)
Graph Network 0.359 0.108 0.502 0.319 0.113 0.530 0.725 0.784 3.849
ra (0.009)  (0.001)  (0.001) 0.006)  (0.001)  (0.008) (0.073) (0.116) 0.121)
E3NN 0.210 0.077 0.705 0.301 0.110 0.551 0.504 0.705 3.677
- (0.004)  (0.001)  (0.007) 0.002)  (0.000)  (0.009) (0.033) (0.073) (0.139)
Energy v
MLP 0.244  0.097  0.660 0.320 0.124 0.527 0.549 0.854 4.207
(0.000)  (0.001)  (0.002) 0.015)  (0.004)  (0.020) (0.007) (0.046) (0.165)
Granh Network 0.213 0.087 0.701 0.252 0.102 0.632 0.568 0.748 3.759
raph INetwol 0.006)  (0.001)  (0.010) 0.003)  (0.001)  (0.002) (0.093) (0.068) (0.135)
E3NN 0.200 0.074 0.724 0.295 0.111 0.562 0.451 0.872 3.780
- (0.001)  (0.001)  (0.002) 0.006)  (0.001)  (0.012) (0.023) (0.090) (0.160)
0.191 0.071 0.733 0.225 0.089 0.671 0.427 0.455 3.324
DOSTransformer 7003 (0.002)  (0.004) 0.002)  (0.001)  (0.006) (0.024) (0.018) (0.036)

- It is beneficial to consider the energy level

- However, a naive consideration is not much helpful

- For Phonon DOS, predicting Bulk Modulus based on the output of our model is the best
- For Electron DOS, predicting Band Gap, Fermi Energy based on the output of our model is the best
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Table 2: The number of crystals according to the number of atom species (Scenario 1).

Unary Binary Ternary Quaternary Quinary Senary Septenary Total
€Y &) 3 “) () (©) )

Re SU It . O Ut-Of-d i St ri b U t i on #Crystals | 386 9034 21,794 5612 1,750 279 34 | 38,889

Table 3: The number of crystals according to different crystal systems (Scenario 2).

| Cubic Hexagonal Tetragonal Trigonal Orthorhombic Monoclinic Triclinic| Total

# Crystals | 8,385 3,983 5,772 2,101 8,108 6,576 2,101 | 38,889

= Scenario 1 - Train: binary and ternary / Test: Unary, Quaternary, and Quinary

= Scenario 2 - Train: Cubic, Hexagonal, Tetragonal, Trigonal, and Orthorhombic / Test: rest

Model

_ . # Atom Species Crystal System
+ For Scenario 2: As no prompts are available MSE MAE R MSE MAE R?
for unseen crystal systems, we use the mean- Energy X
pooled representation of the trained prompts - 0811 019 0155 0760 0.192 0048
o i : (0.001)  (0.0001)  (0.004) (0.019)  (0.002)  (0.025)
€., mean of cubic, hexag.onal, tetragonal, Grash Network 0610 0.162  0.162 0.523  0.149 0.348
trlgonal and orthorhombic raph INetwor (0.017)  (0.003) (0.028) (0.032)  (0.004)  (0.048)
E3NN 0546 0.153  0.232 0.422  0.134 0.484
- (0.007)  (0.001) (0.005) (0.005)  (0.001)  (0.012)
Energy v
MLP 0510 0.154  0.304 0.430 0.142 0479
- DOSTransformer performs well in OOD (0005 @00 (0004 (0.006) (0.0  (0.004)
P L 0481 0.145 0.353 0.388 0.129  0.533
Graph Network
(0.011)  (0.001) (0.004) (0.005)  (0.001)  (0.014)
E3NN 0528 0.153  0.263 0.414 0.133  0.497
- (0.012)  (0.000) (0.008) (0.001)  (0.001)  (0.006)
DOSTransformer 0450 0.134  0.402 0.380 0.123  0.540
(0.008)  (0.001) (0.011) (0.005)  (0.002)  (0.009)
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Result: Fine-tuning in OOD scenario 2

Fine-tuning on

2 . . . . . .
o .S Model MSE MAE R Various training data ratio for Fine-tuning
10 % training data —
nergy X 0.40 -
LSys  pglob MLP 0.762 0.190 0.042 _‘_ All
[ Energy Decoder ] (0017) (0002) (0022)
rep———— Graoh Network  0-304 0150 0.371 0.391 Only Prompt
Multi-modal Transformer rap etwor (0'006) (0'002) (0.01 3)
- - E3NN 0412 0.133 0.491 0.38
Lax [ Cross-Attentlon}ayer J 1Monocl|nlc 3 (0002) (0001) (0002)
tELz,sys fELz,glab Djj %
LyX Self-Attention Layer 7 -
Fah v ann Energy v/ 2 0.37
Lix [ Cross-Attention Layer | Material MLP 0.419 0.142 0.487
Atom e (0.002)  (0.001)  (0.006) 0.36
Embedding . 0.384¢ 0.130 0.532 N
[ EnergY [ Crystalline Material ]‘_ . e Graph NCtWOrk (0001) (000]) (0005) 0 35 i
Embedding Encoder Teo E3NN 0.413 0.134 0.494 '
N (0.000)  (0.001)  (0.004)

— DOSTransformer 0.34 5 10 15 20

Fine-tuning all model

parameters of DOSTransformer All 0.375 0.123  0.543 Ratio (%)
0.009)  (0.001)  (0.013) atio (%

Fine-tuning only the prompt and Only Prompt 2)':3(?22) 2)&%13) 2)3539)
decoder of DOSTransformer : : :

- Additional fine-tuning achieves performance gain for all models
- However, it was marginal due to a limited number of materials used for fine-tuning

- Only fine-tuning (prompts & decoder) model achieves more performance gain compared to fine-tuning the
whole model

- Fine-tuning only prompts enables the model to additionally learn from few new samples while fine-tuning all incur
overfitting easily 100
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Introduction: Extrapolation

» Goal: Predict unseen data outside the training distribution
= Extrapolation is challenging because the input data usually follows an unknown distribution
= However, extrapolation is common in scientific applications in which discovering unobserved scientific

knowledge is crucial

Time-series forecasting

Material discovery (e.g., geomagnetic storm, network attack, and chemical spectrum)

)
V'

Training C
distribution J
/. :
@)

y 3

Unknown »o
distribution

Observed value

n
>

New structures 1 » Time

v
; Q \ J\ J
‘ o Ge O _
\ / W Trained patterns Unknown patterns
v () o) (
go 16! O Jd o 9 v

Training samples
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Formal Definition of Extrapolation in Machine Learning

= Given: Prediction model f: X — R trained on a training distribution D

» Goal: Minimize the following extrapolation error L,

Prediction model
Training distribution

EXtrE?%?tion Le — |k (x,y)NX\D [LS (y, f(x))]

Data distribution.  Loss function (Cross entropy, MSE)

- (x,y): A sample from out of training distribution X’\D

Input data Target response

= Machine learning achieved remarkable extrapolation performance in computer vision

= However, extrapolation in scientific applications is still far from satisfactory
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Why is Extrapolation Difficult in Scientific Data?

= Nonlinear input-to-target relationship
» Physical and chemical systems have severe nonlinear relationships with their properties.

Si0; (Trigonal, 162) = = = < _ Crystal structures Band gaps (eV)

-

TiFe, (Hexagonal, 194) — = ~

Two similar structures may have completely different physical properties,
whereas two completely different structures may have the same physical property
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Image Dataset vs. Scientific Dataset

= T-SNE plots of MNIST and Material Project (MP) datasets

= Each point indicates an image or a material with target response (label) denoted by colors.
= MNIST: class label
= MP dataset: band gap

(a) MNIST dataset (b) MP dataset

751

- 2R

Si0, (225)

i

Si0, (136)

501

251

_50 i

_75.

-£d
-3
‘A

‘6’0

BN (186)

75 -50 -25 0 25 50 75

Similar materials do not

Similar images share similar labels . c
necessarily share similar labels
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How Neural Networks Extrapolate (Xu et al, ICLR21)

= Theoretical findings in extrapolation: Neural networks with ReLU — simple linear regression in the

extrapolation regime

Model prediction in
extrapolation regime

CDR Function we want to
f approximate

Extrapolation

MLPs converge to linear functions outside the training data range

= Proposed solution: Remove nonlinearity from the data itself to linearize the problem
= Limitation: Requires domain knowledge to remove nonlinearity, and task-specific / data-specific
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= Extrapolation
« How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
* Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022
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Extrapolation of Neural Networks

Gyoung S. Na! and Chanyoung Park?
1Korea Research Institute of Chemical Technology (KRICT), Republic of Korea o

2Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea O
ngsO@krict.re.kr, cy.park@kaist.ac.kr
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Related Work on Extrapolation

= Representation learning

* Pros: Universally applicable method

» Cons: Constraints on data distributions
* Transfer learning

» Pros: Problem-specific methods, goal-directed learning

= Cons: Source datasets, similar data distributions, re-training
= Graph reformulation

» Pros: Easy to implement, theoretical backgrounds

» Cons: Manual reformulation, white-box systems

Most existing studies mainly focus on supporting extrapolation rather than learning extrapolation models

Can we learn extrapolation models?
KRICT KAIST 109




Can we learn extrapolation models?
. Image Dataset vs. Scientific Dataset

» Heatmap visualization of within- and between-class distances on benchmark image and materials datasets

Image Scientific dataset
(a) MNIST dataset (b) CIFAR10 dataset (c) MP dataset
m " -EE EoEEE -AEEE B Em
., -IIEEEEEEEE -AEEE N N |,
~ H B EaN ~HEEE B BN
o I EnEEE .y R T Ie
B | < H B

L
., - IEEEEEEE . N N y
ol HEEEN - I
., ~-IENEEEEE N | . ~H N
Bl __ 0 _DEN -EEEE N EE
., - il |, -hael B R,
Small Within-class distance (Diagonal) Larae
Easy Prediction task (Classification) Difficult
Prediction tasks can be made easier when, Distance
Two inputs with same label & Small input distance Consistency!
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Distance Consistency (DC)

» Consistency w.r.t. the distance between the inputs and their target responses
" e.g., images > materials
» Extend our argument from classification to regression

= Assume: Classification with infinite number of classes = regression

Linear regression on synthetic datasets
(a) R%=0.627 (b) R2=0.799

1.0 D
0.9 OIS

0.8 it S
A
(b) 0%.0 0.2 0.4 0.6 0.8 1.0 b 0 0.2 0.4 0.6 0.8

(b)R? =0.901 (d) R?=0.998

0.7

0.6

@

0.5

0.4

Regression accuracy ( R2 score)

Distance consistency

o %.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0

High distance consistency = High accuracy (R? score) = Input-to-target relationship is made simple

KRICT KAIST 1




Problem Reformulation of Extrapolation

= We reformulate the extrapolation problem as a representation learning problem aiming to linearize the

input-to-target relationships

{ Extrapolation } {Rerl)_reser.]tatmn}
earning

= Our goal: Increase the distance consistency aiming at simplifying the input-to-target relationships

= Given: Two pairs of data samples (x;,y;), (x;, ;)

= Define: The distance between them
Dist. btw. targets N N
a(@d(x %) — d(5,;) > > > dd(x ) - d(viyy)
Consider all 1=14j=1
N? pairs

Dist. btw. inputs
We adopt Wasserstein distance to measure the
distance consistency between input and target

KRICT KAIST 12




Nonlinearity Encoding based on Wasserstein Distance

» For a set of probability measures I1 on Ox), Wasserstein distance is defined by an optimization problem as:

1/p

N -

w, = (inf f Ix — yll,m(x, y)dxdy) Why Wasserstein distance*
€Il J6y

Many scientific data has unknown and arbitrary shaped distributions

= However, there is a problem in applying Wasserstein distance in our task
» Wasserstein distance is defined only for the data distributions of the same dimensionality.

= Our task: Regression
= Input: Vector (€ RY) €=
» Target: Scalar (€ R) €=

Dimension mismatch!

KRICT KAIST 113




Nonlinearity Encoding based on Wasserstein Distance

» |nstead, we define distance distribution to apply Wasserstein distance between two distributions of
different dimensions

Definition) For a n-dimensional space X € R", distance distribution ¥ is defined as a probability
distribution of pairwise distances d(x,x") for all (x,x") € XXX, where d: XXX — [0, ) is a distance metric.

Distance consistency btw input and target!

1/p
W, = (7%211':[ JQXQ“X — Yllpn(x, Y)dxdy> ‘ Wi (K, fK‘y; W, 0) = 7%rellf[ MXMHT — u||lm(r, w)drdu

=1
(p ) * r=d(¢(x;0),¢(x’;0)): Dist. btw input data in embedding space

« u=d(y,y'): Dist. btw target data

Our goal: Maximize the distance consistency between input and target
- The distance between two inputs should be determined based on the distance between their targets

KRICT KAIST 114




Problem Definition of Nonlinearity Encoding

= Our method: Automatic Nonlinearity Encoding (ANE)

Data distribution in the original feature space Data distribution in the embedding space of ANE

Nonlinearity
Encoding

>

Mixed data

distribution

Easy

KRICT KAIST 15




Optimization: Decomposition of Lagrangian

= Qur problem can be defined as follows:

K # training data Joint optimization
w.rt. 0 and
= argmmz 2 inf |rl]- — ul-j” n(rij,uij)drdu
i=14=j=1T€I Joroar p

c nj=d ((p(xi; 0), d(x;; 9)): Dist. btw input data in embedding space
* u;j = d(y;,y;): Dist. btw target data

= We can define a Lagrangian of the objective function as (refer Kantorovich-Rubinstein duality [6]):

Ly = X jen Z(k,q)e]\f\lij (“rij - ukq” - f("ij) - g(ukq)) T (1ij, Ukq) + X jren Z(k,q)e]\l‘\lij”Tij - ukq” (7ij) Ugq)

+ X )en (P(Tij) — Lkel; (7, ukq)) fip) + X e (@ij) = Zegyen T(1eqs i) g i) + i jyew 2 (kq)EN\I;; 1 (Tieq, wij) 9 (usf),

where V' = {(i,j) [ foralli,j € {1,2,...,N}}, and [;; = {(k,q) | u;; = uyq for (k,q) € N}.

Pairs with the same target distance

KRICT KAIST
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Optimization: Model Parameter Optimization

* In the end, the representation learning problem to encode the nonlinearity is given by:

N N
G* = argénil’lzi=12j=1 T}:glf[ MXM”TU — ul-j”pn(rij,uij)drdu

e 1;=d ((p(xi; 0), p(x;; 0)) : Dist. btw input data in embedding space
* u;; = d(y;,y;): Dist. btw target data

Enforce distance consistency
9+ — N A between data pairs!
A /L 1||7”ij —
L= ]:

KRICT KAIST 17




Optimization: Model Parameter Optimization

ANE

Prediction
model

Training of ANE-based prediction model

1
2
3
4
5

® 9 o

9

10

11

12

Input :Training dataset D = {(x1,y7), ... (XN, YN)}
Embedding network ¢(x; 0); Prediction model
f(¢(x;0); u); Sampling method ¢(x; D); Distance
metric d

repeat

fori=1; i< N; i++do

s = ¥(x;3; D) // List of indices of the samples.

forj=1; j<|s|; j++do

rij = d(¢(xi;0), p(xs;; 0)) and u;; = d(yi,ysj)
Lw+ = ||rij — uijl|2
end

end

Optimize @ with respect to Lyy.
until 0 converged;

Optimize p on Z = {(¢4(x1;0%), 1), ... (9(xn;67), yn) }-
Return ¢(x; 0*) and f(P(x; 0%); u*)

KRICT KAIST

Training dataset
D = {(Xll Y1): ey (XNI YN}

Data-agnostic!

Training dataset with

nonlinearity encoding

Z = {((l)(xl; 9*), Y1)' R (¢(XN; 9*)' YN}

Prediction
model
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Experiments

» Matrix-shaped data
= Graph-structured data
» Time-series data

KRICT KAIST 119
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Extrapolation on Matrix-Shaped Data: n-Body Problem (1/3)

» Task: Given mass, position, and velocity of n particles, estimate future velocities of n particles

. ‘ Mass: m® . ' Mass: m{+D
iy e () A @) () i e A (D) L (E+HD) L (E4D)
‘ Position: x ) Y ) , Z t Prediction of Position: x . Y% . , Z .
Velocity: v,g ),vj(, ),vz( ) the next state Velocity: v,g ¥ ),vj(, * ),vz( )
Physical system of k—H Physical system of I
n = 3 particles at t d-dimension n = 3 particles att + 1 d-dimension

= Data preprocessing: 3-dimensional 3-body problem. x; € R3*7 and y, € R3*3 & Matrix-shaped data
= Simulated 10 datasets
» Train: Observations in time [0, 80]
» Test: Predict velocity in future time (80, 100]

KRICT KAIST
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Extrapolation on Matrix-Shaped Data: n-Body Problem (2/3)

» Metric: Distance correlation (Corr) between the simulated (ground-truth) and predicted velocities
= To measure how accurately the models predict future trends of the velocities

Direct prediction method GNN-based methods Metric learning-based method

Idx. | NBNet | GIN MPNN UMP | LRL-F SLRL-F | ANE-F
0.32 0.54 0.35 0.25 0.43 0.53 0.18
0.49 0.54 0.53 0.36 0.52 0.49 0.45
0.57 0.54 0.53 0.46 0.52 0.59 0.29
0.25 0.68 0.26 0.26 0.09 0.07 0.03
0.66 0.93 0.71 0.69 0.85 0.65 0.49
0.11 0.22 0.17 0.16 0.12 0.12 0.02
075 0.94 0.63 0.67 0.61 0.44 0.40
0.44 0.85 0.26 0.29 0.27 0.38 0.15
0.39 0.26 0.10 0.70 0.18 0.40 0.03
0.64 0.72 0.55 0.54 058 56174 0.27
mean 0.46 0.62 0.41 0.44 0.41 0.40 0.23
+std. | +0.19 | £0.24 +0.20 +0.19 | +0.23 018 +0.17

o 0 00NN WN

ANE generates input representations that are the most effective to reducing the extrapolation errors

KRICT KAIST 121




Extrapolation on Matrix-Shaped Data: n-Body Problem (3/3)

0.4
0.2
0.0
-0.2
-0.4

-0.6

0.100
0.075
0.050
0.025
0.000

-0.025

State-of-the-art GNN-based method

0.87

1.0
0.61

0.5
0.4

0.0
—05 0.2
10 0.04
-0.2

-15

v
-2.0 1ly | -0.4+
0 50 100 150 200
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v3,x
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0.4
0.2
0.0
-0.2
-0.4

-0.6

0.100
0.075
0.050
0.025
0.000

—0.025

Ours (ANE-F)

1.0
0.5
0.0 —
T -0
-1.0
-15
vl,x 20 vl,y
50 100 150 200 0 50 100 150 200
01
— 0.0
-01
-0.175
Vax | -0z Va2y V2,2
-0.200 {
50 100 150 200 0 50 100 150 20( 0 50 100 150 200
1.0
0.4
05
0.2
0.0
0.0
-0.5
-0.2
-1.0
-04
-15
v3,x v3.y -0.6 173’2
50 100 150 200 0 50 100 150 200 0 e’ 100 150 200

= Simulated velocity (ground truth)

Predicted velocity
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Extrapolation on Matrix-Shaped Data: n-Body Problem (3/3)

State-of-the-art GNN-based method Ours (ANE-F)

08 N
1.0
0.6 o 61
05
02 0.4 Yz 41
0.0 )
0.0 0.2 0.0 :
-0.5
=02 0.0 502 10 .01
—0.4 -02 =8 15 g
vllx -0.4 vl’z -0.6 vlrx -2.0 vl;y 0.4+
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 50 100
= _g»
0.100 0.100 I
o1l ~0.050} 01 V\\M ~0.050 "\
0.075 : 0.075 .
0.050 | 0.050
— ]
0.025 1.0 0.025 1.0
0.000 0.000
-0.025 0.5 -0.025 5
0.5 Va2

4 UZ,Z

100 150 200 100 150 200

] 0.0 1 00

0 50 0 50 1
1.00 Loof
0.75 —0.51 0.75 —0.51
0.50 0.50 ): :
0.25 —1.0 = —) 025 —1.01
0.00 0.00 M

~0.25 —1.51 0.25 —1.51
~0.50 vl y V3 2 ~0.50 vl y U3 2
0 o 100—2.01 i i i ) 00 150 200 0 5o uf—2.07 . i ' . 00 150 200
0 50 100 150 20( 0 50 100 150 200

= Simulated velocity (ground truth) Predicted velocity

ANE is better at predicting sudden explosions of velocity
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Extrapolation on Graph-Structured Data: Materials Property Prediction

» Task: Predict four material properties (Formation energy, Band gap, Shear modulus, Bulk modulus)

= Discovering novel materials is a fundamental task in various fields (e.g., semiconductor and renewable energy)
V: A set of nodes (atoms)

U: A set of edges (bondings) > > Physme_d and chem!cal
_ properties of materials
X: Node feature matrix

E: Edge feature matrix

A material can be represented as an attributed graph ¢ = (V, U, X, E).

= Data preprocessing
» MPS dataset: Benchmark materials dataset containing 3,162 materials
» Train: Materials that contain only two types of elements (i.e., Binary materials)
» Test: Materials that contain three/four types of elements (i.e., Ternary and quaternary materials)

KRICT KAIST
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Extrapolation on Graph-Structured Data: Materials Property Prediction

KRI

Metric: R? score

-~
Ve

ANE-MPNN outperforms state-of-the-art GNNs and metric learning methods

T KAIST

Method Formation Band Shear Bulk
cHho Energy Gap Modulus | Modulus
GCN 0.662 0.254 0.526 0.574

(£0.019) | (+£0.071) | (£0.025) | (+0.037)

0.072 0.352 0.714

MPNN £0.052) | NA | (10344) | (20.007)
0.163 0.405 0.732

CGCNN NAA | (10424) | (20.441) | (20.011)

UMP 0.763 0.351 0.552 0.707
(£0.042) | (+£0.069) | (+£0.003) | (+0.022)
0.819 0.259 0.704 0.769
LRL-MPNN 1 1 0024) | (£0.034) | (£0.009) | (£0.021)
0.841 0.396 0.693 0.767
SLRL-MPNN 6 018) | (£0.052) | (£0.013) | (£0.007)
0.879 0.447 0.716 0.790
ANE-MPNN | 1 5.017) | (£0.055) | (20.015) | (+£0.011)
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Extrapolation on Time-Series Data: Geomagnetic Storm Forecasting

» Task: 1) Predict geomagnetic storm, 2) Detect geomagnetic storm

= Data preprocessing
» Dataset: MagNet NASA dataset

= 1-year geomagnetic storm data is divided into 4 sequential periods (% used for training, ¥4 used for test)
Task 1

Task 2

Vanilla GRU Ours (ANE-GRU)
Method Extrapolation Error Detection Accuracy 40
etho MAE Corr Precision | Recall F1-score
RNN 16.089 0.710 0.133 0.281 0.178 5 %
(£0.806) | (£0.025) | (£0.013) | (£0.065) | (+0.015) 3 ¥
14.721 0.696 0.164 0.260 0.201 Q o
g g
ISIM | (£0.702) | (20.065) | (£0.048) | (£0.087) | (+0.062) £ :
GRU 14.613 0.687 0.145 0.230 0.177 g - g :
(£0.368) | (£0.027) | (£0.027) | (£0.055) | (+£0.034) @ A
Q Q
TF 13.106 0.670 0.185 0.145 0.159 g g
(£0.717) | (£0.031) | (£0.115) | (£0.074) | (+0.084) - -
13.700 0.499 0.189 0.519 0.272 2 2
- A A
LRL-GRU |10 581) | (£0.031) | (£0.035) | (+£0.186) | (0.054)
-120 -120
SLRL-GRU 10.986 0.455 0.260 0.336 0.291
10.534 0.428 0513 0.495 0.502 7000 7400 7800 8200 8600 7000 7400 7800 8200 8600
- . . . . . Time Time
ANE-GRU | (10.407) | (20.041) | (£0.044) | (£0.071) | (+0.042)

KRI

== == Ground truth === Prediction ==== Detection threshold

ANE-GRU outperforms GRU, and ANE achieved further improvement over metric learning-based approaches
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ANE for Discovering Solar Cell Materials

» Task: Predict band gaps of perovskites
» c.f.) Perovskite has received significant attention as solar cell materials for renewable energy
» |nfer materials properties of crystal structures containing unseen elemental combinations
= Data preprocessing
» Divided HOIP dataset by eliminating the materials that contain specific elements
» HOIP-HIGH: HOIP — (Germanium (Ge) and Fluorine (F))
= HOIP-LOW: HOIP — (Lead (Pb) and lodine (1))
» Range of band gaps between training and test data is completely different
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ANE for Discovering Solar Cell Materials

= Metric: R? score

N/A: negative R*

Dataset
Method HOIP-HIGH | HOIP-LOW
GCN 0.213(0.162) N/A
MPNN N/A N/A
GNN methods —=r=~oq N/A N/A
UMP N/A N/A
LRL-MPNN N/A 0.521(£0.131)
DML methods [_SLRL-MPNN | 0182(+0160) | 0
ANE-MPNN | 0.558(0.044) | 0.664(0.071) |

Predicted band gap (eV)

Vanilla GCN
6.0
e ) b=
5.0 % %o &
3 0.0 —%
° g° % °
SRR =
4.0 o . 2
N Q
o 3
® ... o
R? =0.213 &
3.0 : ,
3.0 4.0 5.0 6.0
Ground truth band gap (eV)

Ours (ANE-MPNN)

6.0
5.0
S A%, 88,
o}' % A >
4.0 o N
R? = 0.558
3.0 : ; ; ,
3.0 4.0 5.0 6.0
Ground truth band gap (eV)

ANE-MPNN roughly captured the relationships, while GCN fails to do so

KRICT KAIST
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Sampling Strategies and Extrapolation

* Time complexity of the training process of ANE: 6" = argmin YL 2 — wij|| > o)
» Three sampling strategies to reduce the time complexity:
» Random sampling: selecting a data point randomly at each iteration
= k-NN sampling: selecting k nearest data points for an anchor data
» Hardness sampling: selecting k data points based on the training errors (top-k largest errors)

I
- Random sampling performs the best despite its simplicity
(+ Random sampling = Density-based sampling)

Formation = Band Shear Bulk
energy gap modulus  modulus

o o o
» o o0

<
b

R? score of linear regression

o
o

Random sampling Bl k-NN sampling Bl Hardness sampling
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Conclusion

* Proposed a data-agnostic embedding method for improving the extrapolation capabilities of ML

Nonlinearity
Encoding
—p
Mixed data
distribution
Data distribution in the original feature space Data distribution in the embedding space of ANE

» Maximized distance consistency between the inputs and their targets (Based on Wasserstein distance)

» The distance between two inputs should be determined based on the distance between their targets

= Demonstrated the effectiveness in various scientific applications of various data formats
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Introduction: Relational Learning

* Molecular Relational Learning
- Learn the interaction behavior between a pair of molecules

- Examples
- Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react
« Predicting solubility when a solute and solvent react
- Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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Papers

= General
« Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
« Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
« SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021
« Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

= Information bottleneck-based
« Graph information bottleneck for subgraph recognition. ICLR 2021

* Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
« Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
« Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

= Causal inference-based
« Discovering invariant rationales for graph neural networks. ICLR 2022
« Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. NeurlPS 2022
 Causal attention for interpretable and generalizable graph classification. KDD 2022
 Shift-robust molecular relational learning with causal substructure. KDD 2023
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Papers

= General
« Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018

Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020

SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021

Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021
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Polypharmarcy side effect

= Many patients take multiple drugs to treat complex or co-existing diseases
« 25% of people ages 65-69 take more than 5 drugs

« 46% of people ages 70-79 take more than 5 drugs
« Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

’ = Extremely difficult to identify
\ / « Impossible to test all combinations of drugs

« Side effects not observed in controlled trials

& " 15% of the U.S. population affected
A « Annual costs exceed $177 billion

N9
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. Given a drug pair, predict side effects of that drug pair
Decagon: Over\"ew Decagon

29 = (H A )

= Task: Predicting polypharmacy side-effect (Drug-drug interaction)

= |dea: Construct a multi-modal graph of following relations
« 1. Protein-protein interaction
« 2. Drug-protein interaction
- 3. Drug-drug interaction (polypharmacy side effects; each side effect is an edge of a different type)

E Polypharmacy E
DoxycyclineA side eﬁects/& Simvastatin

A=

Ciprofloxacin

I

-
Iy LﬁMupirocin

Multi-relational edge
prediction model

A Drug  © Protein ry1 Gastrointestinal bleed side effect A—@ Drug-protein interaction

E Node feature vector I Bradycardia side effect ©—O Protein-protein interaction
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Decagon: Exploratory Data Analysis (EDA)

= Observation: Co-prescribed drugs (i.e. drug combinations) tend to have more target proteins in
common than random drug pairs

- Itis important to consider how proteins interact with each other and to be able to model longer chains of (indirect)
interactions.

0.8 Hl Random drug pairs Il Rib fracture
[ Co-prescribed drug pairs W@ Cough

0.7 (i.e., drug combinations) mm Acute pancreatitis
R 0.6 Bl Inflammatory bowel disease
= Q- High blood pressure
S o
= 2 0.5
n O
- 5 0.4
© c
8 903
=

o 0.2
0.1
0.0K

No shared (0-501% shared (50-100]% shared
target proteins target proteins target proteins

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
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Polypharmacy E

side effects Simvastatin

ry E
l’1—A Mupirocin

B
- Encoder: GCN operating on the graph and D°XY°VC""GA§\
produces embeddings for nodes

« Decoder: Tensor factorization model using these
embeddings to model polypharmacy side effects

A Drug @ Protein ry Gastrointestinal bleed side effect A—® Drug-protein interaction

Wg'l]l) M‘i E Node feature vector T2 Bradycardia side effect ©—O Protein-protein interaction Predictions
M.—(A)» Query p(A: r1,A)
h_‘,\,",‘.1 drug pair | b
'y Gastrointestinal bleed effect ’Z’f‘% p(A, Iy, A)
Z.

= p(A, r3aA)

b i
‘ Zs S
r,  Bradycardia effect ‘ p(A, r4,A)
D"‘u
k “ .
.QQE ng | &5
Drug target relation Fif2elgiEsin :i(()jlé/;;r;faercrzlsacy p(A s Ins A)




Decagon: Experiments

= Dataset
« Protein-protein interactions: Physical interactions in humans [720 k edges]

Drug-protein relationships [19 k edges]
Side effects of drug pairs: National adverse event reporting system [4.6 M

Additional side information
Final graph has 966 different edge types
« Multi-relational link prediction

= Setup
« Construct a heterogeneous graph of all the data
- Side-effect centric evaluation:
 Train: Fit a model on known side effects of drug pairs
+ Test: Given a query drug pair, predict all types of side effects

o—O
NHN—C0
edges]
Iy
Simvastatin

M
Ciprofloxacin

Doxycycline  Mupirocin

Drug pair ¢, d leads
to side effect r,
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Decagon: Results (Side Effect Prediction)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

AURQOC AP@50
B Decagon RESCAL tensor factorization
DEDICOM tensor factorization Node2vec + Logistic regression

36% average in AP@50 improvement over baselines
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Decagon: Results

Table 4. New polypharmacy side effect predictions given by (drug j, side effect type r, drug j) triples that were assigned the highest probabil-
ity scores by Decagon

k Polypharmacy effect r Drug i Drug j Evidence

1 Sarcoma Pyrimethamine Aliskiren Stage et al. (2015)

4 Breast disorder Tolcapone Pyrimethamine Bicker et al. (2017)
6 Renal tubular acidosis Omeprazole Amoxicillin Russo et al. (2016)
8 Muscle inflammation Atorvastatin Amlodipine Banakh et al. (2017)
9 Breast inflammation Aliskiren Tioconazole Parving et al. (2012)

Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor

Touri Banakh,' Kavi Haji,>* Ross Kung,? Sachin Gupta,”’ and Ravindranath Tiruvoipati>’

"Department of Pharmacy, Frankston Hospital, Peninsula Health, Frankston, VIC 3199, Australia
*Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC 3199, Australia
’School of Public Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia

Correspondence should be addressed to Iouri Banakh; ibanakh@phcn.vic.gov.au

Received 26 February 2017; Revised 19 April 2017; Accepted 4 May 2017; Published 25 May 2017

Rhabdomyolysis

Article  Talk

From Wikipedia, the free encyclopedia

Rhabdomyolysis (also called rhabdo) is a condition in which damaged skeletal muscle breaks down

rapidly.[61415] Symptoms may include muscle pains, weakness, vomiting, and confusion.[3!4] There may be

tea-colored urine or an irregular heartbeat.[315] Some of the muscle breakdown products, such as the

protein myoglobin, are harmful to the kidneys and can cause acute kidney injury.[7163]
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Predicting Solvation Free Energy (2 0} 2} X} 0| L4 X|)

= Solvation free energy
« Change in free energy for a molecule to be transferred from gas phase to a given solvent

« Quantifies solubility of drug molecules
« A large negative value - high solubility
« A lower magnitudes/positive value = poor solubility Solute

Solvation free energy

AGsolv

)
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CIGIN: Overview

= Task: Predicting solvation free energy

= Previous studies considered only the solute for solvation free energy prediction and ignored the
nature of the solvent

Solute
NCCO

.\o/ .\0

Phase 1

Solvent
Lt

® ©
\./

Solute Features Solvent Features

* e " —>| Gather

NN L N

Message
Passing Phase

[
\./. > .\./c

r

® Gath
\./.ﬁl ather

Solvent Features

(A) B’ B
. NN ..(__.).. o - Phase 1: Compute inter-atomic interaction
BN - M w N within both solute and solvent
:( ). - Phase 2: Calculate a solute-solvent
- Readout —>M MW O interaction map
1 - 8 : 8 o - Phase 3: Predict the solvation free energies
<.>_) B -ng-orv‘o O
) Readout —Sm . O AGSolv
Interaction Map (I) T o =
| EN. NN EE.EE H(A")
T uN.EN M
| SEN. .EE
EN..EE HE. . BN
(B) (A) (A)

Solute Features

Interaction Phase

Prediction Phase

Phase 2

Phase 3
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Solute
NCCO

CIGIN: Model Architecture

By iy .\.I\. l . EE

Solute Features  Solvent Features

(A)
EN. NN

.\c/.\o e d .\:/.\o

Message

(BY) (B)
EN. NN
EN.EN EN.EE

EN. .EE EN. BN ;(B")

Readout

pa—
e
] |

e
ogogoyope
®

Passing Phase

o
Solvent Nt > 0
occ T i

DN - 5
\./. \./. EE..EE

(B)
Solvent Features

= Phase 1: Message Passing Phase

(]
1
(]
1
EEN
EEN
EEE
L

[ ]

>

Message function  Node feature
1
mstt =) My(hl, Rl o)  BET = U, (RE, miH)
weN (v)

(A)
Solute Features

|Interaction Phase | |Prediction Phase

Edge feature  Node update function

Neighbors of v
Final feature of v

F, = g(z,,h),Yv eV
set2set layer

= Phase 2: Interaction Phase = Phase 3: Prediction Phase

f(An, By) = tanh(A,, - By,)
A" = Rsolute <A7 A,) , BH — Rsolvent (B7 B,)

set2set layer

f(A,,Bn),Vn=1,2,3..J,Ym=1,2,3,..K

Atom m of solvent

Inm set2set layer

Atom n of solute

AG

Solv

A/ — IBI B/ — ITA fflnal [Concat(A”’B”)]
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CIGIN: Results

Predicted AGs,, (kcal/mol)

" ° . e °
:0’ L .
N $e .
: F =
© F g ..
. g .o
=20 -15 -10 -5 0

Experimental AGs,), (kcal/mol)

Model RMSE (kcal/mol)
Baseline model 0.65 +0.13
CIGIN (sum pooling) 0.61 +0.12
CIGIN (set2set) 0.57 £ 0.10

N

C

Ethanol

Solvent 1
A

O
(@)

N \N 738
2-aminoethanol
Solute

AG, =-7.81kcal/mol VOI

00

—
o 2 © Kel
N — e

Interaction Map

Figure 3: Heat map of the normalized (min-max) interaction
map for 2-aminoethanol (solute) and ethanol(solvent) along
with the predicted solvation free energy.
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MIRACLE

Intra-view drug
representations

= Task: Predicting drug-drug interaction

O Anchor
O Positive
O Negative B St

representations

= Key idea: Construct a graph-of-graphs

Figure 3: The proposed graph contrastive learning frame-
work.

Inter-view: bond-aware attentive encoding Interaction prediction

A De RHng
s ~ @ g € Rdg
4 \OH S N 1T Y s s e e e e s e
HNTY M.
1 \: o
1 v, J§> O/Y - DD —>S
! e g v predictor core
\ OH #* Z A Sampling
\ 7 ] &
A3 4
S OH_ P I ] Contrastive
f\‘ \§ J learning Integrated
Attentive pooling Output * embeddings

n0) _ (Op,(-1)
by = > Wgh

Cij
JSCW Trainable weight matrix shared by

the same type of chemical bond ¢;;
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= Information bottleneck-based
« Graph information bottleneck for subgraph recognition. ICLR 2021

Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022

Improving subgraph recognition with variational graph information bottleneck. CVPR 2022

Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023
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Introduction: Relational Learning

* Molecular Relational Learning
- Learn the interaction behavior between a pair of molecules

- Examples
- Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react
« Predicting solubility when a solute and solvent react
- Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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Introduction: Functional Group

» Functional Groups

- Specific atomic groups or structures that play an important role in determining the chemical reactivity of
organic compounds

- Compounds with the same functional group generally have similar properties and undergo similar
chemical reactions
- Examples
- The hydroxyl group structure has the characteristic of increasing the polarity of the molecule
- Molecules containing hydroxyl structures, such as alcohol and glucose, commonly have a high
solubility in water

Functional Group

.’ , H OHOHOHH OHO

: I R—C— OH H—C—C—C—C—C—C—H
| . H H H H OHH

1 Hydroxyl Group’I

_________ Alcohol Glucose

Hence, it is important to consider functional group for molecular relation learning
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Introduction: Representing Molecules as a Graph

= Molecule = Can be represented as a graph
» Functional Group = Can be represented as a subgraph

Functional Group 2

Functional Group 1

Molecule Functional Group
(=Graph) (=Subgraph)

Recently, information theory-based approaches have been proposed to detect important subgraph
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Information Bottleneck

» How can we find an important subgraph based on machine learning model?

= Solution: Information Bottleneck Theory

- A theoretical approach to the trade-off between information compression and preservation

- Given random variables X and Y , the Information Bottleneck principle aims to compress X to a bottleneck
random variable T, while keeping the information relevant for predicting Y

- That is, the goal is to obtain T that compresses as much of information contained in X while still being

able to predict Y
> Widely used to learn noisy robust representation

. Minimize Ml between X and T
Imirn —I(Y; T) + ,BI(X; T) - T should contain minimal information
T about X
- Compression

Maximize M| between T and Y
- T should contain as much information about Y as possible
- Prediction

Information Bottleneck Objective
(I(X,Y): Mutual information between X and Y)

4 )
Compression Prediction
Input Bottleneck Output
Variable Variable Variable
- /
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Graph Information Bottleneck: Overview

* How can we apply information bottleneck theory to graphs?

= Information Bottleneck Graph (IB-Graph)
- To detect a subgraph that maximally preserves the property of the original graph

- Subgraph becomes the bottleneck variable T
- Problem formulation: Find Subgraph G;z that is important for predicting Target Y

Gig = argmin —I1(Y; Gig) + PI(G; GiB)

GIB
Compression Prediction
—— E—)
9 918 Y
Input Bottleneck Target
Graph Graph Variable

Functional Group

155



Graph Information Bottleneck: Existing studies (1/3)

GIB objective
G = argmin —I(Y; Gig) + BI(G; GiB)

QIB H(lj)aX Lot (¢2 ) gsub

T-step inner optimization

A 4

Aggregate

\

Soft aggregatlon

M sub @
i

|

- &I

10 cls
0,1
01 —> Lcon
0,1

_______ 0,1

Outer optimization

N
1 f43(Gi,Geus,)
Z f¢2 Gi, gsub ) log N Z e’ 2 bj

i=1,j7#

Final objective

2% )
Qm:r}ﬁl E(gsuba ¢17 ¢§) = Ecls (%1 (y|gsub)7 ygt) + B£M1(¢§7 gsub)
st ¢ = arg¢max Lyi1(92, Gsub)-

2
Perform T steps
\ %
Y gsub (ya gsub) log qd¢1 (y|gsub)dy dGsup

Zlog q¢q yzlgsub ) — _Ecls(qm (y|gsub) ygt)
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Graph Information Bottleneck: Existing studies (2/3)

» Extract a subgraph in terms of edges
- Model an edge based on Bernoulli distribution to perform graph compression

(@) onN_J-{Edge Emb

___________________________________________________________

\_ Predictor fjy

-------------------------------------------------------

m(gn —I(Gg;Y)+ BI(Gs;G), s.t. Gg ~ g4(G)

Igl,i;l —E [logPy(Y|Gg)] + BE [KL(P¢(G5|G)||@(GS))] ,s.t. Gg ~ P¢(GS|G)
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Graph Information Bottleneck: Existing studies (3/3)

» Extract a subgraph in terms of nodes
- Inject noise into node embeddings to perform graph compression

I
Readout
! 7 = Aih; + (1— )€ -
Sigmoi Noise Prediction

¥ Injection I
Select Sampl ) : : . :
{:}— D1 Pn _Lt_am e ® E~Proice 'Ring v: 0.96 RingV: 0.37

pi 2 0.5 Ai~Ber(p;) :Ring x: 0.04 Ring x: 0.63
Gsub I

(a) (b)

However, the existing studies address single-input tasks, hence cannot be applied to
relational learning tasks with two input graphs

Y: ng v
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Conditional Graph Information Bottleneck
for Molecular Relational Learning
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Recall: Functional Group

» Functional Groups

- Specific atomic groups or structures that play an important role in determining the chemical
reactivity of organic compounds

- Compounds with the same functional group generally have similar properties and undergo
similar chemical reactions

= On the other hand, the role of functional group varies depending on which solvent the solute
(Chromophore) reacts with

- Examples: C-CF3 structure decreases the solubility of a molecule in water
- However, it is unknown how C-CF3 structure affects the solubility of a molecule in oil
- Hence, it is important to consider the paired solvent when detecting important substructure from solute

Functional

I" group of solute \‘. Solvent
; F © © Existing approaches for
| / | 5 Water é oil information bottleneck cannot
C—=C-F. capture such a prior knowledge
| N\ |

F Decrease Solubility

«_C-CF3 Structure -
_______________ 160



Proposed Method: Conditional Graph Information Bottleneck

= Conditional Information Bottleneck Graph (CIB-Graph)
- Consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Chromophore)

Gig = argmin—-I(Y; Gis) + PI(G; GiB) Graph Information
Bottleneck
GiB
Conditional Graph
QCIB = arg min —[(Y; QCIB|Q )+'BI(QCIB Q |§ ) Information Bottleneck
Gir (CGIB)
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Conditional Graph
QCIB = arg min —I(Y; QCIB|Q )+,51(QCIB,Q |G®) Information Bottleneck

Proof of Lemma Gl (CGIB)

» By proving the following lemma, we show that minimizing the CGIB objective is
equivalent to detecting task relevant subgraph

Lemma 4.3. (Nuisance Invariance) Given a pair of graphs
(G, G?) and its label information Y, let G} be a task ir-
relevant noise in the input graph G'. Then, the following

inequality holds:
I1(Gers; GnlG%) < —1(Y;G6m1%) +1(G'; GemlG?)  (©)
Proof of Lemma 4.3 Suppose that G} and Y, G and G2, and joint random variable (G}, G?) and Y are
Assuming that G, Gdig, G2, G2, and Y satisfy the Markov condition (Y, G2, G%) - G = Gz, independent respectively. Then, for I(Gig; Y|GA, G2) we have:
we have the following inequality due to data processing inequality:
1(Gée: YIGn, G2) = H(Y1G3,G*) — H(Y|Gx, Géis, 6%)
I(gl.gl |gZ) — I(gl .gl gZ) _ I(gl . gZ)
;9CIB CIB' Y CIB’ > H(Y|G?) — H(Y|G¢is, G?)
> 1(Gip Y, G, G2) — 1(Geims G2) = 1(Y:G&8l6D)  (2)
=] 1;1,2+I 1;Y1,2_I 1;2
(QCIB G § ) (gCIB (GG ) (gCIB g ) By plugging Equation (2) into Equation (1), we have:
= I(QéIB; grlllgz) + I(géIB;Ylgrlu gz) (1) I(gl;géIB|92) > I(géIB; g%lgz) + I(Y,' QéIB|92)

“ 1(Ghss GalG?) < —1(Y;GéslG?) +1(6% GéislG?)

By minimizing the CGIB objective function, the model learns a CIB-Graph with the smallest mutual
information with task-irrelevant noise. )



Proposed Method: Conditional Graph Information Bottleneck
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min —I(Y; QéIBIQZ) +f I(gl; gcl;IB |g2)

Overall procedure:

Chain Rule of M

I(X;Y,2)=I(X;2) + I(X;Y|2)

=I(X;Y)+ I(X; Z|Y)

Decompose the conditional Ml based on the chain rule of MI, and
then derive the upper bound of the decomposed terms

s

~I(Y; GoplG?) = —1(Y; G, G°) + 1(Y; G°)

_I(Y§ g(liIB’ gz) < EQ&IB’QZ’Y [_ 1081’9 (Y|QéIB, gZ)]

\

N\

(G GoplGY) = 1(Ghp: 61, G%) —1(Giy: G7)
I(QCIB g Q ) < Egl G? [—— ].OgA-F WA-F WBZ]
= Lyp (gCIB’gl’g )
_I(géIB§ gz) < EQ&IB’QZ [_ logpg(g2|gé13)]
= 'LMIZ(géIB’ G%)

Prediction Loss

Compression Loss
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min SIS GERlG%) +A (G G |G?)

Proposed Method: Conditional Graph Information Bottleneck

LMll LMIZ Lpred
A
[ 1
1 N Ry
gt N SRER
TReadout
T E
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T ENoise 7
Samplin
ping t gCIB
pl' ey le = 5
H%= (E?||E?)
Importance
H'=(E'||E)_*
Node P
Interaction I

- Step 1: Optimizing the prediction loss

~I(Y; GeplG?) = —1(Y: Gos G°) +I(Y:G%) -+ Chain rule of mutual information

Directly calculating the mutual Information is intractable;
Instead, we minimize the upper bound

[Proposition. (Upper bound of —I(Y; G5, G?)) Given a pair of graph (G1, G?), its label information Y, )
and the learned CIB-graph G},5, we have:

~1(Y; Gép, G2) < Ey g1 62 |- logpa(Y|Geis, G2)]

&Where po(Y|Geip, G?) is variational approximation of p(Y|Ggig, G2).

J

Proof. By the definition of mutual information and introducing variational approximation pg(Y|Gdg, G2) of
intractable distribution p(Y|Géig, G2), we have:

(vl 2 = [, P(Y19cm G°) 106) =By [ 22|~y o202
(V3 Gre 6%) = By, gyp.60 108~y V)= B |85y | = Fatew |80
[ po(Y|Geis, G2)]
= Ey g1, 62 |10 % + [Eggm,gz[P(Y|gélB'92)||P9(Y|Qé13»92)]
i L o
> E, 1 ~2]|lo M *» Non-negativity of KL divergence
= “Y.Gcs p(Y)

= Ey g1 ¢2[logpe(Y|Gée 6%)] + H(Y) i



min SIS GERlG%) +A (G G |G?)

Proposed Method: Conditional Graph Information Bottleneck

LMll LMIZ Lpred
A
o ]
G, (CHE (W zg

T Readout

Tl
/11 /‘{Nl —

'ql

Readout

\Nmse

\1..\1 1

T Sampling g(:IB
oy PN = A 2112
H?= (E*||E®)

Importance
Hl=(EY||ED)

Node
Interaction I

‘o a

- Step 1: Optimizing the prediction loss

~I(Y:GlplG?) = -I(Y: Gl G°) +1(Y:G%)  ++ Chain rule of mutual information

Directly calculating the mutual Information is intractable;
Instead, we minimize the upper bound

fProposition. (Upper bound of —I(Y; G5, G?)) Given a pair of graph (G1, G?), its label information Y,
and the learned CIB-graph G},5, we have:

~1(Y; Gép, G2) < Ey g1 62 |- logpa(Y|Geis, G2)]

kWhere po(Y|Geip, G?) is variational approximation of p(Y|Ggig, G2).

Implementation.

- Consider pg(Y|Géis, G2) as a predictor parameterized by 6, which

outputs the model prediction Y based on the input pair (G, G2).
- The upper bound is minimized by minimizing the prediction

0SS Lprea(Y, Géis G2)
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min—I(Y;g(leB|g2) +ﬁl(gl;g(1jIB|gz)
Proposed Method: Conditional Graph Information Bottleneck

Ly Lnglz Lp;ed - Step 1: Optimizing the prediction loss
1 1
ol L THIR LWL Zg ~1(Y; GAplG) = - I(Y: Gos G°) + 1(Y;G%)  ++ Chain rule of mutual information
TReadout /
T1 . The 2nd term is empirically found to be not helpful
/11 /‘{Nl —> "§
\ll{glsle é —e- CGIB CGIBcont
T Sampling gCIB - Absorption -~ Emission
vy DN = A n . We treat r(Y) as fixed spherical Gaussian,
HZ%= (E?||E?) / , ,
g 21 // 1(Y;G?) < Eg2[KL(pe (YIGD)|Ir (V)]
Importance 19—./& = where r(Y)~N(Y]0,1)
181 24 -
H1=(E1”E1) 4 Yoo 0.01 01 10 00 0.01 01 1.0
Node . . - 2
Interaction I < Weight coefficient for 1(Y; G*)
E' J»Nl g2 @}Nz Increasing the contribution of this term deteriorates the model performance
taan ) feNN Hence, we removed 1(Y;G*) from the model

P g %
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min ~1(Y; GoplG?) +B UG5 GeplG?)
Proposed Method: Conditional Graph Information Bottleneck

L ‘hglz Lp;ed - Step 2: Optimizing the compression loss
Zg,  UEE  CENzg
TReadout [(GYGoRlG?) = 1(Gog: G, G) —1(Gig: G°)  ++ Chain rule of mutual information
1 ~N—
Mo A _T; % Ly Ly,2
NitNoise <
T Sampling gCIB . . . .
Dyt = b. - Ly;;1: Compression through Noise Injection
H2= (E?||E?) *Injecting noise into unimportant nodes
- Remaining nodes are important nodes
Importance
Hl=(EY||ED)_ % - Ly2: Solute Plredlctl_on | - |
Node |, * Encourage G¢g, Which is compressed conditioned on G2, to contain as
Lo on | much information about G2 as possible

g2 @}NZ * This is the term that arises from the Conditional Mutual Information

- Key to success of CGIB! Enables the conditional information compression
fenN of CGIB
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min ~1(Y; GoplG?) +B UG5 GeplG?)
Proposed Method: Conditional Graph Information Bottleneck

L Lnglz Lp;ed - Step 2: Optimizing the compression loss

Zg,  UEE  CENzg
TReadout [(GYGoRlG?) = 1(Gog: G, G) —1(Gig: G°)  ++ Chain rule of mutual information
T? 5 . : C .
Ay o) Ayr = % 1. Compression through Noise Injection
SRNoise & *Injecting noise into unimportant nodes
T Sampling g(:IB
v Pyl = bn i « H} : Representation of node i of G! that contains information about both G, G2
H?= (E*||E%)

‘ « p; = MLP(H]) : Important of node i of G*
Importance
H1 (E1||E13 e . T11 = AiHil + (1 — 2;)e  (Replace H{ with noise e depending on the important of node i)

Nod where A;~Bernoulli(p;) and e~N (uyz, 0'1_211)
ode |,
Interaction I|

Intuition) Unimportant nodes would not affect the model performance
g2 @}NZ even if they are replaced with noise

( )
TGNN Upper bound of 1(G&5;G1,62)
gz 1 N1 2 ZI'V11/1}'(H1'_H 1)2
.ol o2 2 _ Y _ Zjm Ay
o/)\o 1(Ghie: 61 6?) S Egrgz [~3logA+ =-A+——B?|  whered = X}Z,(1 - 4)? and B = -
= Ly (Gis G4 6%)




min~1(Y; Gl1G?) +5 G HGERIED)

Proposed Method: Conditional Graph Information Bottleneck

LMI]' LMIZ Lpred
A
[ |
1 T [z
g CIEm SRE?
TReadout
T! E
).1, ""ANl _> '{\ -g
SitNoise &
T Sampling g(:IB
P1i, -, PNt = ﬁ. 5
[ H?= (E*||E%)
Importance
H1=(E!||[EV)__*5

Node
Interaction I

e
TGNN 2

P g %

El

[(GY;GLRIG7) = (Gop: G, G°) —1(Glhy: G7)

* Chain rule of mutual information
( Upper bound of 1(G&g; 61, 62) A

N_l A:(HY= 2
(Gl 61, 6%) < Egige [~2logA+ A+ B2 where d = B, (1~ 4))? and B = 220 )

O'H1

= Ly (668,64 G%)

\.

J
Proof. Given the perturbed graph G&;g and its representation Zg1,

1> We assume there is no information loss during the
: ol o2 — (el .ol o2
readout process, 1.e.,I(zgéIB,g G )— I(QCIB,Q G )

Z
p( 93:13)

Py (2, 3, |9192)
(QCIB’Q g ) ZgéIB'gl'gz —log

Py (z;1 1616%)
=Egige [—log———— 2

CIEIZIB) —F QéIB‘gl.Qz [KL(p (29(1:13) llg (ZgéIB))]

< [Ezgém'gl'gz [KL(p¢ (Zg2,, 1G1,63)]|q (Zgém))] *» Non-negativity of KL divergence

Assuming that g (Zgém) is Gaussian distribution.

The noise e~N (uy1, o1) is sampled from Gaussian distribution where uy: and o1 are mean and variance of H.

Thus, g (Zgéus) = N(Nlugi, Nloy:) (2) - Summation of Gaussian isZGaussian
1 1 1
And, p (21, 16%G?) = NN s + S5 4} = S02 A, B0, (1= 2) o) @)

By plugging Equation (2) and (3) into (1) we have:

1
_ _1 1 p2 — YN 1 _ 2152 _ XN A (Hj —py1)?
1(Ghie; G4 62) S Egrge [~510g A+ A + = B2| + C where A = T, (1— 1) and B = - o



min~1(Y; Gl1G?) +5 G HGERIED)

Proposed Method: Conditional Graph Information Bottleneck
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Importance

Hl=(EY||ED)

H2= (E*||E%)
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Interaction I

- Step 2: Optimizing the compression loss

[(GY;GLg|G?) = (Gip: G, G) —1(Gom: G°)  ++ Chain rule of mutual information

2. Solute Prediction

Encourage Gz, Which is compressed conditioned on G2, to contain as much
information about G# as possible

Intuition) Make use of G2 when detecting G&ig

1) Variational IB-based approach
Derive upper bound similar to the prediction loss

~1(Gem: G°) < Eg g2 [=logpe(G°1Gem)] = Ly (Gem, G°)

2) Contrastive Learning-based approach
- Minimizing the contrastive loss is proven to be equivalent to maximizing the
mutual information

- Hence, minimize —I(G¢g; G%) by minimizing the contrastive 10ss = CGIB¢ont

.£M12———Z g
i=1

exp(sim(zgéIB - ng)/r)

] i exp(sim(zgéIB’i,ngg)/f) 170



Experiments: Dataset

= 1) Chromophore dataset

- Predicting Absorption max, Emission max, Lifetime

= 2) Solvation Free Energy dataset
- MNSol / FreeSolv / CompSol / Abraham / CombiSolv

= 3) Drug-Drug Interaction dataset

- ZhangDDI / ChChMiner

Dataset G! G? # Gl #@G*> #Pairs Task
Chro- | Absorption | Chrom. Solvent 6416 725 17276  reg.
moph- | Emission | Chrom. Solvent 6412 1021 18141  reg.
ore ! Lifetime Chrom. Solvent 2755 247 6960 reg.

MNSol ° Solute  Solvent 372 86 2275  reg.

FreeSolv * Solute  Solvent 560 1 560 reg.
CompSol * Solute  Solvent 442 259 3548  reg.
Abraham ° Solute  Solvent 1038 122 6091  reg.
CombiSolv ¢ Solute  Solvent 1495 326 10145  reg.
ZhangDDI ’ Drug Drug 544 544 40255  cls.
ChChMiner ® Drug Drug 949 949 21082  cls.
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Result: Main table

Observations

» Qutperforms baselines on both

Molecular Interaction / Drug-Drug

Interaction tasks

Evaluation on drugs unseen during training

Observations
* Improvement gap is largerin
inductive setting
« By detecting function group
that is basic in nature = helps
generalization

Aieerohon Ch;?nr?;li):r?re T MNSol FreeSolv CompSol Abraham  CombiSolv
GCN 25.75 (1.48)  31.87 (1.70)  0.866 (0.015) | 0.675 (0.021)  1.192 (0.042)  0.389 (0.009)  0.738 (0.041)  0.672 (0.022)
GAT 26.19 (1.44) 30.90 (1.01)  0.859 (0.016) | 0.731 (0.007)  1.280 (0.049)  0.387 (0.010)  0.798 (0.038)  0.662 (0.021)
MPNN 24.43 (1.55) 30.17 (0.99)  0.802 (0.024) | 0.682 (0.017)  1.159 (0.032)  0.359 (0.011)  0.601 (0.035)  0.568 (0.005)
GIN 24.92 (1.67) 32.31 (0.26)  0.829 (0.027) | 0.669 (0.017)  1.015 (0.041)  0.331 (0.016)  0.648 (0.024)  0.595 (0.014)
CIGIN 19.32 (035)  25.09 (0.32)  0.804 (0.010) | 0.607 (0.024) 0.905 (0.014)  0.308 (0.018)  0.411 (0.008)  0.451 (0.009)
CGIB 17.87 (0.38)  24.44 (0.21)  0.796 (0.010) | 0.568 (0.013)  0.831(0.012)  0.277 (0.008)  0.396 (0.009)  0.428 (0.009)
CGIBcont 18.11 (0.20) 23.90 (035)  0.771 (0.005) | 0.538 (0.007) 0.852 (0.022) 0.276 (0.017)  0.390 (0.006) 0.422 (0.005)
Performance on Molecular Interaction (Regression)
(a) Transductive (b) Inductive
ZhangDDI ChChMiner ZhangDDI ChChMiner
AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy
GCN 91.64 (031) 83.31 (0.61) 94.71 (033)  87.36 (0.24) | 68.39 (1.85)  63.78 (1.55)  73.63 (0.449)  67.07 (0.66)
GAT 92.10 (0.28) 84.14 (038)  96.15(0.53)  89.49 (0.88) | 69.99 (2.95) 64.41 (1.39) 75.72 (1.66)  68.77 (1.48)
MPNN 92.34 (0.35) 84.56 (0.31)  96.25(0.53)  90.02 (0.42) | 71.54 (1.24) 65.12 (1.14)  75.45(0.32)  68.24 (1.42)
GIN 93.16 (0.04)  85.59 (0.05) 97.52 (0.05)  91.89 (0.66) | 72.74 (1.32)  66.16 (1.21)  74.63 (0.48)  67.80 (0.46)
SSI-DDI 92.74 (0.12)  84.61 (0.18)  98.44 (0.08)  93.50 (0.16) | 73.29 (2.23)  66.53 (1.31) 78.24 (1.29)  70.69 (1.47)
MIRACLE | 93.05 (0.07) 84.90 (036) 88.66 (037)  84.29 (0.14) | 73.23 (332)  50.00 (0.00)  60.25 (0.56)  50.09 (0.11)
CIGIN 93.28 (0.13)  85.54 (0.30)  98.51 (0.10)  93.77 (0.25) | 74.02 (0.10) 66.81 (0.09)  79.23 (0.51)  71.56 (0.38)
CGIB 94.27 (047) 86.88 (0.56)  98.80 (0.04) 94.69 (0.16) | 74.59 (0.88) 67.65 (1.07) 81.14 (1.20)  72.47 (0.16)
CGIBcont | 93.78 (062) 86.36 (0.75) 98.84 (0.31) 94.52 (0.38) | 75.08 (0.34) 67.31 (0.82) 81.51 (067) 74.29 (0.14)

Performance on Drug-Drug Interaction (Classification)
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min ~1(Y; g(leB|g2) "@I(gl; gcleBlgz)

. @Controls Trade-off btw/prediction and{compression

Result: Analysis on 8

o OB Boome| As B increases, Compression > Prediction
Absorption Emission
19.54 26.0
19.01 2551 ] e .
) 250 2 Observations - Sensitivity Analysis

g o sl « B = 1.0: Poor performance in general (focus on compression)
o N . . .

1801g—" 2401 * However, the model fails to detect functional group when g is too

3 235 small = poor generalization

01 o1 o1 1o 2% om o1 1o —2 Hence, finding an appropriate B is crucial

B B

Sensitivity Analysis on

2-aminobenzoic acid 1H-indole-4-carbonitrile

@\ "\ J\Sj\ Observations - Qualitative analysis

« B =1.0-> CGIB focuses on compression

ﬁ_m e e.qg., CGIB focuses an aromatic ring, which is not relevant to
6-amino-1H-pyrimidine-2-thione 4-hydroxy-3-methoxybenzoic acid chemical reactions
B ¢ YC(“ 7]/@ « B =0.01-> CGIBfocuses on prediction
U I/« e.qg., CGIB focuses on external part, which generally more
B =0.01 B=10 g= oot relevant to chemical reactions

Qualitative Analysis on 173



min ~I(Y; GL |G +A1(G; G| GP)
min —I(Y; GAplG?) +B(1(GLyy: G, G — 1(Gl i %)
= min —I(Y;Gés, G°) +fU(GiR: G G°) — (G ig: G%))

Result: Ablation studies

—0— CGIB CGIBcont

Absorption Emission
26.0 1

Observations - Ablation Studies
19.5 - 25.5 1

« Considering conditional Ml is the key for
w /.\ 2> success in relational learning
(V)] . .
= 185 24.5° * A naive consideration of G and G?

18.0 \. 24.0 rather performs worse than considering
17.5- 23.51 G only
17.0 = - - — 23.0 — . . :
1 2 3 4 1 2 3 4
1. Without IB > min — I(Y; G, G?) (Same as CIGIN) Importance of IB
2. 1(Gim: G > min — 1(y; Gig gz) + 1(9(1:113;91) (Same as VGIB) Importance of conditional IB
3.1(Gas: 61, 6%) > min — I(Y; g, 6%) + 1(GLs; 61 6%) Importance of valid conditional 1B

4.1(G%; G&el6®) > min — I(Y; Gl 62) + I(GY; GL51G%) (Same as CGIB)
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Result: Qualitative analysis

Solvent (G?)

(a) Ordinary solvents

(b) Liquid oxygen solvent

(a) Chromophore (61) interact with ordinary solvents (G?)

0.
Vi ~
~

Focus on external parts = Aligns with domain knowledge

N P
: <:> = b/ (b) Chromophore (G1) interact with liquid oxygen solvents (G?)

Focus on all parts = Aligns with domain knowledge

Solvent (G?)

(C) Ethanol, THF
1-hexanol, 1-butanol

benzene

Chromophore (G1)
EDAC

N0
I

Oxygen-Carbon

Nitrogen-Carbon

(c) Chromophore (G1) interacts with various solvents (%) (e.g.,
Trans-ethyl p-(dimethylamino) cinnamate (EDAC))
Detected parts in chromophore depend on the polarity of solvent

- Case 1: High polarity solvent (Ethanol, THF, 1-hexanol, 1-butanol)
- Interact with high polarity solvent
- Case 2: Low polarity solvent (Benzene solvent)

Structure with low polarity is detected (e.g., Nitrogen-Carbon)
—> Interact with low polarity solvent

Detected structure of Chromophore (G!) depends on the paired solvents (G?)
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o T o mm = = = —

Conclusion

» Proposed a method for tackling relation learning tasks, which
are crucial in materials science

« Based on Conditional Information Bottleneck

= |t is crucial to consider Graph 2 (Solvent) when detecting the
important subgraph from Graph 1 (Chromophore)

. i.e, Make use of G? when detecting G¢;g of G*

= CGIB has interpretability, which makes it highly practical

P e e el e el et e e e

Crystal Structure or
Chromophore

Interaction

————————————————————————————————————————————

—— o o o o o =

?

LMII LMIZ £pred
A
[ 1
Z
gho (UH CTHIZg
TReadout
T £
2 \N01se &
Samplin
T pling t gClB
,le =

H2= (E*||E%)

Importance

H'=(E'||E")
Node P
Interaction I|
R
T TGNN
GNN

P p TA

176



Table of Contents

Al

2t

-

2RI AEY IR

AR 2 0f|= 0171 XAl =8

L OO L

Transformer 7|2t 2 4O Bl extrapolation

ST 2+ o5} HHS 0% 917 S8 A

-rr
>.
\d
o )

XMH 0|Z(Information bottleneck) & @11t

NS I3t A0}

Z(Causal inference) 7|

=

177



= Causal inference-based
« Discovering invariant rationales for graph neural networks. ICLR 2022
« Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. NeurlPS 2022
 Causal attention for interpretable and generalizable graph classification. KDD 2022
 Shift-robust molecular relational learning with causal substructure. KDD 2023
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Ba Ckg roun d Causal Inference

N ' * Due to the empirical process of data collection,
e M i S the data for machine learning is heavily biased
Alaskandog e Context of the given data becomes a

confounder that misleads the machine learning
model to learn spurious correlations between
pixels and labels

Test Data:

Confounder
(Forest)

Causal Inference aims to improve model performance by removing spurious correlations
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BaCkgrou nd Causal Inference for graph structured data

5 g

Frequency

<

&3

90%
5% 5%
Tree Ladder Wheel

Bases of House Motif

£

e Task: Determining whether a graph contains House Motifs

43

 (Observation: Statistical Shortcuts link the Tree motifs with House motifs

- When facing with out-of-distribution (OOD) data, statistical shortcuts will
severely deteriorate the model performance (since the shortcuts will change)

180



BaCkgrou nd Causal Inference for graph structured data

= Example of spurious correlation in molecule property prediction

* Instead of probing into the causal effect of the functional groups, model focuses on “carbon rings” as
the cues of the mutagenic class

Carbon ring
0

Q

5

(3) N-phenylacridin-9-amine

HN il o o
Aniline 4-iminocyclohexa-
2,5-dien-1-one
O

0.94 (17118)

Mutagenic Scaffold

(24) 4-acridine-9-yliminocyclohexa-

2.5-dien-1-one

0 (0/1)

Non-Mutagenic Scaffold

- In fact, “Carbon ring” has no relationship with
mutagenicity
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Discovering Invariant Rationales for Graph Neural Networks (1/4)

= Key idea: Causal patterns are stable (invariant) to distribution shift

« Causal patterns (e.g., wolf) to the labels remain stable across environments (e.g., forest, snow), while the relations
between the shortcut patterns (e.g., forest, snow) and the labels (e.g., contains wolf or not) vary

Ground-Truth Label

Structure Causal Model
(SCM)

Input graph G consists of two disjoint part: ﬁ W H

- Causal part € and Non-causal part S C — G— S
House?

Causal part C only determines target value Y C Y

Dependency between €C and § ﬁ },{

=>» Create spurious correlation between S and Y C — §

(S<C-Y)
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Discovering Invariant Rationales for Graph Neural Networks (2/4)

= Research question: How to get multiple environments from a standard training set?
—> Causal intervention

Generate s-interventional distribution by doing intervention on §
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Discovering Invariant Rationales for Graph Neural Networks (3/4)

Definition 1 (DIR Principle) An intrinsically-interpretable model h satisfies the DIR principle if it

1. minimizes all s-interventional risks: E;[R(h(G),Y |do(S = s))|, and simultaneously
2. minimizes the variance of various s-interventional risks: Vars({R(h(G), Y |do(S = s))}),
where the s-interventional risk is defined over the s-interventional distribution for specific s € S.
Guided by the proposed principle, we design the learning strategy of DIR as:
min Rpr = Es[R(h(G),Y|do(S = s))] + AVars({R(h(G),Y|do(S = s))}), 4)

where R (h(G),Y | do(S = s)) computes the risk under the s-interventional distribution, which we
will elaborate in Section 2.4. Var(-) calculates the variance of risks over different s-interventional
distributions; A is a hyper-parameter to control the strength of invariant learning.

1. Minimize the risk under all s-interventional distributions
2. Minimize variance of risk over different s-interventional distributions
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Discovering Invariant Rationales for Graph Neural Networks (4/4)

Distribution
Intervener RE
No BP
Rationale == Shared Graph === Shortcut Classifier =
@_' Generator . Bncoder  _ """ Causal Classifier No BP

T

Invariant Rationale

Causal Prediction

Model Architecture

Rationale Generator

* Split the input graph instance g = (V, £) into two

subgraphs: causal part ¢ and non-causal part s
Z = GNNl(g), Mij = O'(Z;rzj), Generate mask
85 - Top'r(M © A)’ 85 = Topl—r((]' - M) © A)

Distribution Intervener

* Collects non-causal part of all instances into a memory
bank as S

* Samples memory $; € S to conduct intervention do(S =
§j), constructing an intervened pair (¢;, §;)

Model Prediction

U =Yz © o(Ys)

Optimization

R(h(G)a Y‘dO(S - §)) — ]E(g,y)EO,Szé,C:h@(g)l(@a y)

Rs = ]E(g,y)€(9,§=g/h<:~(g)l@g7 y)
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Causal Attention for Interpretable and Generalizable Graph Classification (1/2)

Task: Graph Classification = “How to classify biased graph datasets?”

Graphs

!

GNN Encoder

Edge Attention

Trivial Attended-graph

————————

»| Node Attention

GraphConv

=N

Readout '|[ Rea‘c;out ]

[
I
1
1
I
I
|
1
1
|
1
|
1
1

______________

Causal Attended-graph

Uniform Label

0

1 2

Random Addition

'

Classifier

!

\ 4

Classifier

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Class L
_ 0

One-hot Label

1 2 3

Lcaus ¢

Model Architecture

Soft Mask Estimation
Separate the causal and shortcut features from the full graphs

Disentanglement
Separate the causal and shortcut features from the full graphs

Causalgraph hg = fieadout(GConve (AOMg, XOMy)), zg, = Oc(hg,)

Trivial graph hg = freagout(GConv: (AOMg, XOMy)),  zg, = @:(hg,)

1
Lsup = "D Z yglog(ch) Causal graph = Ground truth label prediction
GeD

1
Linif = D Z KL(yunif- Zg,) Trivial graph = Random label prediction
GeD
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Causal Attention for Interpretable and Generalizable Graph Classification (2/2)

Task: Graph Classification = “How to classify biased graph datasets?”

Causal Intervention via Backdoor adjustment

/ \ G : graph data
C : causal feature
— Y S : shortcut feature Challenges
' . 1) Confounder set 7" is commonly unobservable and hard to obtain
x\ / R : representation 2) Difficult to directly manipulate graph data (*-Discrete nature)
Y : prediction
- Let’s make implicit intervention on representation level!
Structure Causal Model (SCM)
zg' = ®(hg, +hg 9— Trivial graph from different graphs
P(Y[do(C)) = Pm(Y[C) '
= D . Pm(YIC.$)Pm(sIC)  (Bayes Rule) Lo =——— > Y yilog(zg)
DT A
= D seq Pm(YIC.9)Pin(s)  (Independency) oI gen o

- ZSGTP:(YIC, s)P(s),

Confounder Set

Backdoor Adjustment
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Recall: Relational Learning

* Molecular Relational Learning
- Learn the interaction behavior between a pair of molecules

- Examples
- Predicting optical properties when a chromophore (Solute) and solvent (Solvent) react
« Predicting solubility when a solute and solvent react
- Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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Shift-Robust Molecular Relational Learning with Causal Substructure

G1:Molecule 1

Y :Target Value

Structure Causal Model (SCM) for
Molecular Relational Learning

Why not G? and C??

77 N\
(\51 }) @ C1: causal Substructure in Molecule 1
\\::\:'::j, 1. i

/ \ / 8" : Shortcut Substructure in Molecule 1

R1: Molecule 1 Representation

Key causal-effect relationship
in molecular relational learning

gl_,cl4_g2

Causal substructure €1 of molecule G!
- Determined by not only G1but also G2

[ I
c 0
/ Interaction [ Decrease Solubility ]
C - C u F <:,\V Water
\ F ; ),
LA\ ® Unknown
C-CF3 Structure -,
oil
Causal substructure (C1) )
of Solute (G') Solvent (G“)
S J
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MEthOdOI()gy Causality in molecular relational learning

e 4 Backdoor paths that confound the model

Cl(_gl_)sl(_gz_)RZ_)y
Cl(_gz_):RZ_)Y
Clg?->81->R1>Y
CleGl>S'>RI>Y 4

> G1:Molecule 1
\ G2 : Molecule 2
‘ s1) @ ¢! : Causal Substructure in Molecule 1

S1 : Shortcut Substructure in Molecule 1

(31) R1: Molecule 1 Representation

R?%: Molecule 2 Representation
@ Y :Target Value * In molecular relational learning,

— G2 is given and utilized during model prediction,
all paths are blocked except for

Structure Causal Model (SCM) for €l Gl >8> RIS Y Only remaining backdoor path!
Molecular Relational Learning

N NN

Causality we are interested in (C1 = Y)
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M Et h Od (0 I Ogy Backdoor adjustment

@ : 61 : Molecule 1 P(Yldo(C"),6%) = P(Y|C, 6*)
\/ﬁx N G* : Molecule 2 = Z P(Y|CY, G%s) - P(s|C', G*) (Bayes’ Rule)
Qsl }) @ C1 : Causal Substructure in Molecule 1 S
NS 81 : Shortcut Substructure in Molecule 1 5 1 2 . 2
= P(Y|C", G4 s) - P(s Independence
@ \(81) R1: Molecule 1 Representation Zsl (Y G"s) - P(sIG7) ( P )
R?%: Molecule 2 Representation
xA . = » P(Y|C', G%5s) - P(s|G°),
@ Y :Target Value Zs: < Confounder Set

Structure Causal Model (SCM) for Backdoor Adjustment
Molecular Relational Learning

Alleviate confounding effect via Backdoor adjustment!
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M Et h Od (0 I Ogy Causal molecular relational learner

LKL

‘Ccausal Lint
A

Normal Uniform

|'||'||'| mzcl

0 01 2

Regression Classification
f Readout
Zg1| W | «— [EMasking

; i)
(111 252 CHAL] zsn

T Readout

A

TReadout

EMasking§

Readout

Atom Importance
Ai~Bernoulli(p;)
[ T ]« t
N JH!=EY | ED]
Z 1 LT 1]
¢ [l -

Node

_ Node

El :|>N1

T GNN

FEN,

Interaction " |1nteraction I
k2 } N2 T GNN

Disentangling with Atom Representation Masks

* Separate the causal substructure €1 and shortcut substructure §1 from G
- Not trivial to explicitly manipulate molecular structure
- Let’s separate in representation space by masking atom representation!

pi = MLP(H})

Importance of atom i

C} = AZH} + (1 — /11')6

where

Causal substructure
] Ai ~ Bernoulli(p;) €~ N(,Uﬂl,ffél)

SI = (1-A;)H;

Shortcut substructure

* Gumbel sigmoid approach for differentiable optimization of p;

A; = Sigmoid(1/tlog[p;/(1 — p;)] +log [u/(1 —u)]), u ~ Uniform(0, 1)
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MEthOdOI()gy Causal molecular relational learner

LKL ‘Ccausal iint
I * 1 ? |
Normal Uniform
: I TNz 42 W zZz
i T A
2 ez Readout TReadout
Regression Classification -
E
t ~ Readout =
ASE | <+— f=Masking— &
O T T T O Tt ATICe
Ai~Bernoulli(p;)
P { [T ]
Z.2 [ ]
”""‘{ s i
H'=(E"||E")[]
[T T ]
Zg - 5 ol
Node P _ Node

Interaction I| " |1nteraction I
E! 1 T

Disentangling with Atom Representation Masks

e Causal substructure €1

- Cross entropy loss for classification
- RMSE loss for Regression

—) Lcausal (Y’ Z01, Zgz)

Normal Uniform
« Shortcut substructure 1 : i
) ) .. ) —) LkrL (Yrand» ZSl) !
- Learn non informative distribution 0 01 2
Regression Classification
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(P(Y|do(Cl),§2) = P(Y|C, 6%) )

= > P(Y|C, G%s) - P(s|C", G%) (Bayes’ Rule)
MEthOdOI()gy Causal molecular relational learner

= Z P(Y|CY, G2 5) - P(s|G?) (Independence)

= S P(YICh. 6% ) - P(sIGP).

Lo, Lca;mr Li;:t Backdoor Adjustment
ol e | DTz ez Conditional Causal Intervention via backdoor adjustment
:) 01 2 TReadout 1 TReadout
Regression Classification . .
' E Masking * Straightforward approach = Generate an intervened molecule structure
ASE | Rﬂt Masking— E
P ain o I [ Challenges
me{jjjzg; =__=. 1) Molecules exist on the basis of various domain knowledge in molecular science
o e e ' Eﬂ 2) Intervention space on €1 should be conditioned on the paired molecule G2
g' ] L] |
T
 Node L Node Our Solution
g1 «  Obtain shortcut substructure ST by modeling interaction with other molecules 91 and
v F }NZ Tow molecule G2

Lint = Z Z L(Y, ch,zg%Zgl)

(G1.6%)eD S1
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M Et h Od (0 I Ogy Causal molecular relational learner

LKL ‘Ccausal Lint
I ? 1 ? |
Normal Uniform
: |'| |'| |'| C TNz Ze [ W] | Zx
i T A
Readout
0 orz TReadout
Regression Classification
Masking
f Readout

ASE | <+—— r=Masking—

Atom Importance
Ai~Bernoulli(p;)

I

Readout

[T |«
LS,W_[ zgz

Ll
Zg

. — ]
([ =(E*||E)[| -
L]

Node

_ Node

Interaction I

El :|>N1

" |1nteraction I
} N2 T GNN

Final Objective

Lfinal = Lsup + Leausal +A1 - Lk + A2 - Ling

* Lgy, :loss with paired graph (G, G?) and target ¥

L qusal : 10ss with causal substructure
Ly : loss with shortcut substructure
A4, A, weight hyperparameters for Lg; and L;,;
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Theoretical analysis

Training objective of CMRL ~ — Z log q(Yi|C}., G}

Expand by multiplying and dividing g

n

n Yl Cl 2 n ; 1
ZIO p(Y;] g Z p(Y |§ Q ) : Zlogp(YiIQil,Q,-z)
=1 i=1

2% q(Ick 68) & biIch 67
Y Cl 2 Y 1
—E|l pEY:Cl gz +E Iogp—EYllgl gz)} E [log p(Y|G", 6],

e

p(Y|GL, gﬂ 2l p(Y|c;,Sg,g§>]

Flee et gy | (YICL, 67)

P(Yl|Cll’ Sll, glz)
p(YilCl. G})

p(YilCl. S}, G}) p(S]IC.G})

ip(g G2 Y1) log

1 2
Y1

p(Sil’Yl'lcila glz)
p(Yl|Clla glz) p(Slllcll’ le)

i (G1. G2, Y)) log

i=1
=1(ShYIC, 6%)

p(YICL,G?)

eTaNeD +1(8hY|Ch, 6% +H(YIG', 6°)

min E llog

1. Likelihood ratio between true distribution and predicted distribution
2. Conditional Mutual Information
3. Irreducible constant inherent in the datasets

We can explain the behavior of CMRL in two perspective
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Theoretical analysis

p(YIC!,G?)
q(Y|C, G?)

min E [log ] +1(8hY[ch.g) +H(YIG', G%)

Perspective 1. CMRL learns informative causal substructure

-« Minimize [(S';Y|C!, G?)

Disentangle the shortcut substructure ST that is no longer needed in predicting the label ¥ when the context €1 and gz given.

« Chainrule of MI I(S%;Y|CL, G?) =I(G!, G4, Y)-1(C, G%;Y)

Encourages the causal substructure €1 and paired molecule G2 to contain enough information on target Y.
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Theoretical analysis

p(YIC!,G?)
q(Y|C, G?)

min E [log ] +1(8hY[ch.g) +H(YIG', G%)

Perspective 2. CMRL reduces model bias with causal view

° 1 H
G': Molecule 1 Based on information leakage,

G2 : Molecule 2 —> Model bias can be quantified based on mutual information
@ €l : Causal Substructure in Molecule 1
81 : Shortcut Substructure in Molecule 1 . L.
7 R1: Molecule 1 Representation « Again, several backdoor paths are blocked by conditioning on €1 and G2
R?: Molecule 2 Representation - Enable the direct measure of model bias!

Y :Target Val . ... :
arget Value —> Finally, Loss term minimize the model bias

Model bias
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Expe ri me ntS Dataset description

Dataset Gt G* 4 g1 # G*> #Pairs Task
Chro- | Absorption | Chrom.  Solvent 6416 725 17276 MI
moph- | Emission Chrom.  Solvent 6412 1021 18141 MI
ore * Lifetime Chrom.  Solvent 2755 247 6960 MI
MNSol 4 Solute  Solvent 372 86 2275  MI
FreeSolv ° Solute Solvent 560 1 560 MI
CompSol ¢ Solute Solvent 442 259 3548 MI
Abraham ’ Solute  Solvent 1038 122 6091  MI
CombiSolv Solute  Solvent 1495 326 10145  MI
ZhangDDI ° Drug Drug 544 544 40255 DDI
ChChMiner 1° Drug Drug 949 949 21082 DDI
DeepDDI !! Drug Drug 1704 1704 191511 DDI
AIDS Mole. Mole. 700 700 490K  SL
LINUX 12 Program Program 1000 1000 M SL
IMDB 12 Ego-net. Ego-net. 1500 1500  2.25M  SL
OpenSSL 3 Flow Flow 4308 4308 185M  SL
FFmpeg 1 Flow Flow 10824 10824 117M Sl

Molecular Interaction Dataset

- Predicting Chromophores’ Absorption max, Emission max, Lifetime

- Predicting Solvation Free Energy of molecules (MNSol, FreeSoly,
CompSol, Abraham, CombiSolv)

- Regression Task

Drug-Drug Interaction Dataset
- Zhang DDI, ChChMiner, DeepDDI
- Classification Task

Graph Similarity Learning Dataset

- How similar are the paired graphs? (ex. GED)
- AIDS, LINUX, IMDB, OpenSSL, Ffmpeg

- Regression Task / Classification Task
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Experiments

Overall Performance

Observations

- Chrorr.lol.)hore —— MNSol FreeSolv CompSol Abraham  CombiSolv
Absorption  Emission Lifetime
GCN 25.75 (1.48) 31.87 (1700 0.866 (0.015) | 0.675 (0.021)  1.192 (0.042)  0.389 (0.009)  0.738 (0.041)  0.672 (0.022)
GAT 26.19 (1.44) 30.90 (1.01)  0.859 (0.016) | 0.731 (0.007)  1.280 (0.049)  0.387 (0.010)  0.798 (0.038)  0.662 (0.021)
MPNN 24.43 (1.55) 30.17 (0.99)  0.802 (0.024) | 0.682 (0.017)  1.159(0.032)  0.359 (0.011)  0.601 (0.035)  0.568 (0.005)
GIN 24.92 (1.67) 32.31 (0.26)  0.829 (0.027) | 0.669 (0.017)  1.015 (0.041)  0.331 (0.016)  0.648 (0.024)  0.595 (0.014)
CIGIN 19.32 (0.35) 25.09 (0.32)  0.804 (0.010) | 0.607 (0.024)  0.905 (0.014)  0.308 (0.018)  0.411 (0.008)  0.451 (0.009)
CMRL 17.93 (031)  24.30 (022) 0.776 (0.007) | 0.551 (0.017) 0.815 (0.046) 0.255 (0.011) 0.374 (0.011)  0.421 (0.008)
Performance on molecular interaction prediction task
AIDS LINUX IMDB FFmpeg | OpenSSL
MSE P p@10 | MSE P p@10 | MSE P p@10 | AUROC | AUROC
SimGNN 1.376  0.824 0.400 | 2.479 0.912 0.635 | 1.264 0.878 0.759 93.45 94.25
GMN 4.610 0.672 0.200 | 2.571 0.906 0.888 | 4.422 0.725 0.604 94.76 93.91
GraphSim | 1.919 0.849 0.446 | 0.471 0.976 0.956 | 0.743 0.926 0.828 94.48 93.66
HGMN 1.169 0.905 0.456 | 0.439 0.985 0.955 | 0.335 0.919 0.837 97.83 95.87
HZMNRW 0.936 0.878 0.496 | 0.136 0.988 0.970 | 0.296 0.918 0.872 99.05 92.21
HZMNNE 0.924 0.883 0.511 | 0.130 0.990 0.978 | 0.297 0.889 0.875 98.16 98.25
CMRL 0.770 0.899 0.574 | 0.094 0.992 0.989 | 0.263 0.944 0.879 98.69 96.57

Performance on graph similarity learning task

1. CMRL outperforms all other baseline methods
-2 It is crucial to discover causally related substructure in
molecules

2. Wide applicability of CMRL beyond molecules
- Performs well in dataset that contains core substructure
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EX pe ri me ntS Out-of-distribution performance

In out-of-distribution experiment, we assess the model’s performance on molecules belonging to new scaffold classes

Causal Substructure (NO2)

O— s

Scaffold (Indene)

Molecule: 6-nitro-1H-indene

e

TSNE embeddings

Different scaffolds exhibit totally different distribution

TSNE on splitted data (

o
o ®e e o
e o
® e © @
o & L] &
o og® '/. # A
.‘...o?:.o e © © “”.'Q.-... R
: .o.:" & :t :’O‘o! :t
° %o, . X %o, °
o ©®
e ® ‘ ° [ J @
»” p”
Random Split Scaffold Split

/ Test)
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EX pe ri me ntS Out-of-distribution performance

In out-of-distribution experiment, we assess the model’s performance on molecules belonging to new scaffold classes

(a) In-Distribution (b) Out-of-Distribution
ZhangDDI ChChMiner DeepDDI ZhangDDI ChChMiner DeepDDI
AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy

GCN 91.64 (0.31) 83.31 (0.61) 94.71(033) 87.36 (024) 92.02 (0.01) 86.96 (0.02) | 70.61 (2.32) 64.22 (1.64) 74.17 (0.89) 67.56 (1.29) 76.38 (043) 67.92 (0.81)
GAT 92.10 (0.28) 84.14 (0.38) 96.15(053) 89.49 (0.88) 92.01 (0.02) 86.99 (0.05) | 73.15(250) 65.14 (247) 75.64(0.99) 68.61(0.72) 76.44 (1.27) 67.94 (1.38)
MPNN 92.34 (035) 84.56 (031) 96.25(053) 90.02 (042) 92.02 (0.02) 86.97 (0.01) | 72.39 (1.70) 64.55(1.75)  76.40 (0.91) 68.51 (0.71)  79.03 (0.81)  71.23 (0.90)
GIN 93.16 (0.04) 85.59 (0.05) 97.52 (0.05) 91.89 (066) 92.03 (0.00) 87.02 (0.03) | 75.04 (0.63) 67.14 (1.03) 74.32(293) 67.49 (244) 78.61(058) 70.33 (1.11)
MIRACLE | 93.05 (0.07) 84.90 (0.36) 88.66 (037) 84.29 (0.14) 62.23 (0.75)  62.35(0.30) | 59.57 (0.90) 52.31 (2.24) 73.28 (0.71)  50.49 (059) 62.32 (1.63)  51.30 (0.29)
SSI-DDI 92.74 (0.12) 84.61 (0.18)  98.44 (0.08)  93.50 (0.16) 93.97 (0.38)  88.44 (039) | 71.67 (471) 65.78 (3.02) 75.59(1.93) 68.75 (141) 80.41 (1.74) 72.05 (1.47)
CIGIN 93.28 (0.13)  85.54 (030) 98.51 (0.10)  93.77 (0.25)  99.12 (0.03)  96.55 (0.11) | 73.99 (1.74) 66.44 (1.07) 80.24 (2.00) 73.28 (1.08) 83.78 (0.87)  74.07 (1.19)
CMRL 93.73 (0.15) 86.32 (0.23) 98.70 (0.05) 94.26 (0.28) 99.13 (002) 96.70 (0.12) | 75.30 (1.39) 67.76 (1.41) 82.05 (0.67) 74.21(0.78) 83.83 (0.97) 75.20 (0.66)

Performance on drug-drug interaction task

Observation

CMRL outperforms previous work on out-of-distribution scenarios
- Learning causal substructure enhances the generalization ability of the model
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Expe ri me ntS Synthetic dataset experiments

In synthetic dataset experiment, we assess the model’s performance on various levels of bias in datasets

Trivial subgraphs:

i

Tree
(Baraba5| Albert)

Causal subgraphs:

SIS,

House Cycle

SRS

Grid Diamond

Positive pair

* a pair that shares the same causal substructure
* e.g., {House, House} = Positive

Negative pair
* a pair that each graph has a different causal substructure
* e.g., {House, Cycle} 2 Negative

Dataset bias
* the ratio of the positive pairs containing “BA” shortcut substructures

Number of positive pairs with BA substructure

bias(b) =

Number of positive pairs
B #{Causal-BA, Causal-BA}
~ #{Causal-Tree, Causal-Tree} + #{Causal-BA, Causal-BA}

e Bias level b increases
- “BA” substructures dominates model prediction
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Expe ri me ntS Synthetic dataset experiments

In synthetic dataset experiment, we assess the model’s performance on various levels of bias in datasets

CIGIN =@-= CMRL Imp.
100
95 4 *
o "a
(&)
¥ of
8 70 -
)
<
65

X

0.5 0.7 0.9 0.99 0.999
Bias (b)

AUROC Improvements (%)
of CAMPS vs. CIGIN

Observations

1. Models’ performance degrades as the bias gets severe
- “BA” shortcut confound the model

2. Performance gap between CMRL and CIGIN gets larger as the bias

gets severe
- Importance of learning causality between the substructure and target
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RMSE

Expe ri mentS Model analysis

—@— Absorption Emission
19.51
oo Observations in Ablation Studies
& /
2 1857 Naive intervention whose confounders are not conditioned on paired
18.0 molecule G>
- Performs worse than the model without intervention
17.5 . . . . . . .
I F Y SR YN - Wideness of intervention space introduces noisy signal during model
o N .
W training
—@— Absorption Emission
2007 227 . . . . . .
., Observations in Sensitivity Analysis
=2 21
19.0 1 20 . . . . e .
. 1. Optimal point for 4, exist balancing the noisiness and robustness
ool ] 2. No certain relationship between model performance and 44
. 187'/
17.5 = T T T r T T .
aoon oo A o aoon oo A o Training objective Lfinal = Lsup + Leausal A - LkL+ 42 - Ling
A, = 0.001 for Absorption A1 = 0.01 for Absorption
A, = 0.01 for Emission A1 = 0.01 for Emission
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Expe ri me ntS Qualitative analysis

) O~

(a) Reaction with ordinary solvent

NH, Z
N\\ // '\&
H
S
=N

(b) Reaction with single bond

Observations

Solvent : ethanol

1
|
! ,
[ =
SS
I
I
I
I

Chromophore Polarity

Solvent : acetonitrile

Chromophore Polarity

(c) Reaction with polar solvents

N0
I

Oxygen-Carbon

Oxygen-Carbon Nitrogen-Carbon

Nitrogen-Carbon (High Polarity) (Low Polarity)

(d) Chromophore: EDAC
Solvents: 1-propanol,

1. Discovered causal substructure aligns to well-known chemical domain knowledge
- CMRL selects edge substructure = Chemical reactions usually happen around ionized atoms
- CMRL concentrates on single-bonded substructure = Single-bonded substructures are more likely to undergo chemical

reactions

2. When reacting with polar solvents, CMRL focuses on the edge substructures of high polarity
3. Selected important substructures of chromophore varies as the solvent varies
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Papers: Material property prediction

= Material property prediction
« Neural message passing for quantum chemistry. ICML 2017
« Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. NeurlPS 2017

« Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett.
2018

« Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019

« Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry
Chemical Physics 2020

« Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
« Predicting Density of States via Multi-modal Transformer. ICLR Workshop 2023

= Extrapolation
« How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
* Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022
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Papers: Relational Learning

= General

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018

Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021

Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

= Information bottleneck-based
« Graph information bottleneck for subgraph recognition. ICLR 2021

* Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
« Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
« Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

= Causal inference-based
« Discovering invariant rationales for graph neural networks. ICLR 2022
« Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure. NeurlPS 2022
 Causal attention for interpretable and generalizable graph classification. KDD 2022
 Shift-robust molecular relational learning with causal substructure. KDD 2023
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