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Research area Graphs are everywhere!

- Many�problems�in�our�real-life�can�be�modeled�as�machine�learning�tasks�over�large�graphs

- Our�goal�is�to�use�graph�as�a�tool�for�solving�real-world�problems�by�applying�graph�mining�techniques

Social�Network Road�GraphInternet�of�Things Financial�Graph Molecular�Graph
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Introduction

§ A�molecule�can�be�represented�as�a�graph
• Atom�in�a�molecule:�Node�in�a�graph

• Bond�in�a�molecule:�Edge�in�a�graph

§ Graph�machine�learning�is�widely�being�applied�to�chemistry�/�materials�science

§ Graph�Neural�Network learns�how�to�propagate�messages�between�nodes
• Variants�of�GNNs

• Graph�Convolutional�Networks

• Graph�Attention�Networks

• Message�Passing�Neural�Network
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Features
- Reaction Rate
- Pressure
- Bond Type
- Activation Energy
- Stoichiometry
- Bond Energy
- Intermolecular Forces
- Temperature ⋯

Prediction

Graph Neural Network�

Introduction: Molecular Property Prediction

ex)�Band�gap,�DOS,�Fermi�

§ Predict the properties of a molecule
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§ Learn the interaction behavior between a pair of molecules

Introduction: Molecular Relational Learning

• Examples
• Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react

• Predicting solubility when a solute and solvent react
• Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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§ Overview

§ Node-level Network Embedding
• Random walk-based Node Embeddings (DeepWalk / node2vec)

§ Graph Neural Network (GNN)
• Graph Convolutional Neural Network (GCN)
• Graph Attention Network (GAT)
• Relational GCN
• GraphSAGE
• Deep Graph Infomax (DGI)
• GNNs with Edge Embeddings

Outline
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Classical ML tasks in graphs:
§ Node classification
• Predict a type of a given node

§ Link prediction
• Predict whether two nodes are linked

§ Community detection
• Identify densely linked clusters of nodes

§ Network similarity
• How similar are two (sub)networks

Machine learning on graphs

Link Prediction 
(Friend Recommendation)

??
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Machine learning on graphs

Graphs

Node attribute

Input ML
Model

Classification

Clustering

Link
Prediction

…

Representation 
Learning

Feature 
Engineering
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§ Machine Learning = Representation + Objective + Optimization

Machine learning in general

Representation
Learning

Raw data

Machine Learning 
System

Good Representation is Essential for 
Good Machine Learning

Yoshua Bengio, Deep Learning of Representations, AAAI 2013 Tutorial
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§ Fixed/Hand-crafted Feature Extractor

Traditional feature extraction for images

- Based on Yann Lecun’s slides
- Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110.

Hand-crafted feature
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Machine (Deep) learning based representation learning

Based on Yann Lecun’s slides

§ Multiple layers trained end-to-end
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Traditional graph representation

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml

Problems
§ Suffer from data sparsity

§ Suffer from high dimensionality

§ High complexity for computation

§ Does not represent “semantics”

§ …

Adjacency matrix

How to effectively and efficiently represent graphs is the key!

→ Deep learning-based approach?
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§ Existing deep neural networks are designed for data with regular-structure (grid or sequence)
• CNNs for fixed-size images/grids …

Challenges of graph representation learning

§ Graphs are very complex
• Arbitrary structures (no spatial locality like grids / no fixed orderings)
• Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
• Large-scale: More than millions of nodes and billions of edges

• RNNs for text/sequences …

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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§ Node-level prediction

§ Edge-level prediction

§ Graph-level prediction

Typical tasks
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§ Node-level tasks (or edge-level tasks)
• Node label classification, including node-level anomaly detection
• Node label regression
• Link label binary classification, i.e., link prediction
• Link label multi-class classification, i.e., relation classification

Typical tasks

Ø Social network analysis (e.g., demographic info prediction)
Ø Spam / fraud detection (e.g., transaction networks)
Ø Link prediction (e.g., social networks, chemical interaction 

networks, biological networks, transportation networks)
ØKnowledge graph population / completion / relation reasoning
ØRecommender system (bipartite graphs, hyper-graphs)
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Typical tasks

§ Graph-level tasks
• Graph label classification
• Graph label regression

ØMolecular property prediction
ØDrug discovery
Ø Scene understanding (i.e., objects graph)
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§ Overview

§ Node-level Network Embedding
• Random walk-based Node Embeddings (DeepWalk / node2vec)

§ Graph Neural Network (GNN)
• Graph Convolutional Neural Network (GCN)
• Graph Attention Network (GAT)
• Relational GCN
• GraphSAGE
• Deep Graph Infomax (DGI)
• GNNs with Edge Embeddings

Outline
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Recall: Machine learning on graphs

Graphs

Node attribute

Representation 
Learning

Input ML
Model

Classification

Clustering

Link
Prediction

…

Feature 
Engineering
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§ Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original 
network

§ Similar nodes in a network have similar vector representations

Graph representation learning

Node Embedding

Node Vector
• Node classification
• Clustering
• Link prediction
• …

Tasks



24

§ Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

Node embedding

Original graph Embedding space
(Latent space)

§ Two things to consider
• 1. How to encode nodes?

• Encoder
• 2. How to define similarity in 

the embedding space?
• Decoder (Similarity function)

Figures from http://web.stanford.edu/class/cs224w/
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§ Maps each node to a low-dimensional vector

Encoder

𝐸𝑁𝐶 𝑣 = 𝒛!
𝑑-dimensional embedding vector

Node in the input graph

§ Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

𝐸𝑁𝐶 𝑣 = 𝒛! = 𝒁 ⋅ 𝑣 𝒁 ∈ 𝑅!×|$|

𝑑

|𝑉|

𝑣 ∈ 𝐼|$|

𝑣 =

0

0

0

1

0

0

0

0

ex) 𝑛𝑜𝑑𝑒 4

Each node is assigned a unique
embedding vector (i.e., we directly 

optimize the embedding of each node)

Figures from http://web.stanford.edu/class/cs224w/
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§ Specifies how the relationships in the original graph map to relationships in embedding space

Decoder (Similarity function)

Relationships in embedding space Relationships in the original graph

≈
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑢, 𝑣) 𝒛!"𝒛#

Similarity between 
node 𝑢 and node 𝑣 in
the original network

Dot product between 
embeddings of node 𝑢

and node 𝑣
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§ Encoder: Embedding look-up (Shallow model)
• Deep encoders (GNNs) later in the lecture

§ Decoder: Based on dot product

Encoder + decoder framework

Original graph Embedding space
(Latent space)

Objective

Maximize 𝒛!.𝒛/ for node pairs (𝑢, 𝑣) that are similar

§ How can we define node similarity?

§ Possible choice
• Are two nodes linked?
• Do they share neighbors?
• Do they have similar structural roles?
• …



28

§ Given a graph and a starting node, 
• 1. Select a neighbor of it at random,
• 2. Move to this neighbor
• Repeat 1,2

§ Example of random walk
• Start à 5 à 8 à 9 à 8 à 11
• (Random) Sequence of nodes

What is Random walk?

Start

Figures from http://web.stanford.edu/class/cs224w/
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§ Idea: Learn node embedding such that nearby nodes in the graph are close together in the embedding space

Random walk-based node embeddings: overview

§ Q. Given a node 𝑢, how do we define nearby nodes?

§ A. Through random walk!

§ Step 1. Estimate the probability of visiting node 𝑣
on a random walk starting from node 𝑢 using some 
random walk strategy 𝑅

§ Step 2. Optimize embeddings to encode these 
random walk statistics
• e.g., If two nodes co-occur, maximize their similarity

cf) Dot product = cosine similarity, if 
node embeddings are unit vectors

Why random walk?
Random walk can reflect both local and high-order neighborhood information

Figures from http://web.stanford.edu/class/cs224w/



30

§ Step 1: Run fixed-length random walks starting from each node 𝑢 in the graph using some random walk 
strategy 𝑅

Random walk-based node embeddings: Detailed algorithm

§ Given: 𝐺 = (𝑉, 𝐸)

§ Goal: To learn a mapping function 𝑓: 𝑢 → 𝑅$ for 𝑢 ∈ 𝑉
• 𝑓 𝑢 = 𝒛% ∈ 𝑅!

max
&

7
%∈$

log 𝑃(𝑁( 𝑢 |𝒛%)

Given node 𝒖, we aim to maximize the probability of its neighboring nodes

i.e., we want to learn embedding of node 𝑢 that is predictive of its neighboring nodes

(Maximum likelihood objective)

§ Step 2: For each node 𝑢 collect 𝑁% 𝑢 , the multiset of nodes visited on random walks starting from 𝑢
• 𝑁( 𝑢 : Neighboring nodes of node 𝑢 under random walk strategy 𝑅

§ Step 3: Optimize embeddings according to the following objective
• Objective: Given node 𝑢, predict its neighbors 𝑁((𝑢)
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How to define neighboring nodes?

𝑁( 𝑣) = 𝑏, 𝑐, 𝑑, 𝑒

𝑐

𝑣)
𝑑

𝑒

𝑓

𝑎

𝑏

𝑎 → 𝑏 → 𝑐 → 𝑣) → 𝑑 → 𝑒 → 𝑓Example sequence

Window size=2 𝑎 → 𝑏 → 𝑐 → 𝑣) → 𝑑 → 𝑒 → 𝑓

Neighborhood 

Center node 𝑣)

𝑅Random walk strategy
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Random walk-based node embeddings: Optimization

max
&

7
%∈$

log 𝑃(𝑁( 𝑢 |𝒛%) 𝐿 = 7
%∈$

7
*∈+!(%)

− log(𝑃(𝑣|𝒛%))
Equivalent

§ Intuition: Optimize embeddings 𝒛# to maximize the likelihood of random walk co-occurrences

§ Approach: Parameterize 𝑃(𝑣|𝒛#) using softmax

𝑃 𝑣 𝒛% =
exp(𝒛%.𝒛*)

∑/∈$ exp(𝒛%.𝒛/)

𝐿 = 0
/∈I

0
!∈J"(/)

− log(
exp(𝒛/.𝒛!)

∑K∈I exp(𝒛/.𝒛K)
)

Sum over nodes 𝑣 seen 
on random walks 
starting from 𝑢

Predicted probability of 
𝑢 and 𝑣 cooccurring on 

random walk

Sum over 
all nodes 𝑢

Optimizing random walk embeddings 
= Finding embeddings 𝒛/ that 

minimizes the loss 𝐿
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§ But, optimizing the loss 𝑳 is expensive!

Negative sampling

𝐿 = 0
/∈I

0
!∈J"(/)

− log(
exp(𝒛/.𝒛!)

∑K∈I exp(𝒛/.𝒛K)
)

- 𝑂 𝑉 0 complexity
- We can approximate this normalization term

≈ log 𝜎 𝒛/.𝒛! −0
KNO

P
log(𝜎(𝒛/.𝒛K))

https://arxiv.org/pdf/1402.3722.pdf
• 𝜎 𝑥 = 1

123"#
(Sigmoid function)

• Makes each term a “probability” between 0 and 1
• 𝑃*: Random distribution over nodes

𝑗 ~ 𝑃I,

§ Instead of normalizing w.r.t. all nodes, just normalize against 𝑘 random “negative samples” 𝑗

§ How do we sample from 𝑃& to help the training process?
• Sample 𝑘 negative nodes considering the degree of each node

log(
exp(𝒛/.𝒛!)

∑K∈I exp(𝒛/.𝒛K)
)
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§ After we obtained the objective function, how do we optimize (minimize) it?

Random walk-based node embeddings: Optimization

𝐿 = 7
%∈$

7
*∈+!(%)

− log(𝑃(𝑣|𝒛%))

§ Gradient descent: A simple and the most common way to minimize 𝐿
• Step 1: Randomly initialize 𝒛) for all 𝑖 ∈ 𝑉
• Step 2: Iterate until convergence

• For all 𝑖 ∈ 𝑉, compute the derivative w.r.t. the loss 𝐿, i.e., !"!𝒛!
• For all 𝑖 ∈ 𝑉, update 𝒛$ ← 𝒛$ − 𝜂

!"
!𝒛!

§ Stochastic Gradient descent: Instead of evaluating gradients over all examples, evaluate for a single node
• Step 1: Randomly initialize 𝒛) for all 𝑖 ∈ 𝑉
• Step 2: Iterate until convergence: 𝐿(%) = ∑*∈+!(%)− log(𝑃(𝑣|𝒛%))

• Sample a node 𝑖, for all 𝑗 ∈ 𝑁%(𝑖) compute the derivative w.r.t. the loss 𝐿, i.e., !"
(!)

!𝒛$

• For all 𝑗 ∈ 𝑁%(𝑖), update 𝒛& ← 𝒛& − 𝜂
!"(!)

!𝒛$
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§ Step 1: Run fixed-length random walks starting from each node 𝑢 in the graph using some random walk 
strategy 𝑅

Random walk-based node embeddings: Summary

𝐿 = 0
/∈I

0
!∈J"(/)

− log(𝑃(𝑣|𝒛/)) = 0
/∈I

0
!∈J"(/)

− log(
exp(𝒛/.𝒛!)

∑K∈I exp(𝒛/.𝒛K)
)

§ So far, we have discussed about how to optimize embeddings given a random walk strategy 𝑹
• Different random walk strategies make different 𝑁( 𝑢

[1] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." KDD 2014.
[2] Grover, Aditya, and Jure Leskovec. "node2vec: Scalable feature learning for networks." KDD 2016.

§ Step 2: For each node 𝑢 collect 𝑁% 𝑢 , the multiset of nodes visited on random walks starting from 𝑢

§ Step 3: Optimize embeddings according to the following objective using Stochastic Gradient Descent
• The optimization can be made efficient through negative sampling technique!

• What strategies are there?
• 1. Idea of Deepwalk [1]: Simple random walk (we talked about so far)
• 2. Idea of node2vec [2]: Biased random walk
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§ Idea: Use flexible, biased random walks that can trade off between local and global views of the network
• Deepwalk’s simple random walk mainly focuses on the global view

§ Two strategies to define a neighborhood 𝑁% 𝑢 of node 𝑢: BFS and DFS

§ Example: Walk of length 3 from node 𝑢
• 𝑁456 𝑢 = {𝑠1, 𝑠0, 𝑠7} Local microscopic view
• 𝑁856 𝑢 = {𝑠9, 𝑠:, 𝑠;} Global macroscopic view

(Breadth First Search)

(Depth First Search)

Node2vec: Biased walks

BFS DFS

𝑢 𝑢

How can we interpolate between BFS and DFS?
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§ Biased fixed-length random walk 𝑅 starting 
from node 𝑢 generates neighborhood 𝑁%(𝑢)

§ Two parameters to control the interpolation
• Return parameter 𝑝

• Return back to the previous node
• In-out parameter 𝑞

• Moving outwards (DFS) vs. inwards (BFS)
• Intuitively, 𝑞 is the “ratio” of BFS vs. DFS

Node2vec: Interpolating BFS and DFS

Current situation
- Random walk that started from node 𝑢 just traversed

edge (𝑠1, 𝑤) and is now at 𝑤
- At this point, neighbors of 𝑤 can be 𝑠1, 𝑠0, 𝑠7 or 𝑠9

Idea of biased random walk
Remember where the walk came from!
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§ Main idea: Move to neighbors considering where the walk came from

Node2vec: Details of biased random walk

§ 𝑝, 𝑞 model transition probabilities (1/𝑝, 1/𝑞, 1 are unnormalized probabilities)
• 𝑝: return parameter
• 𝑞: walk away parameter

§ BFS-like walk: Low value of 𝑝

§ DFS-like walk: low value of 𝑞

𝑤
𝑠O
𝑠[
𝑠\
𝑠]

1/𝑝
1

1/𝑞
1/𝑞

0
1
2
2

Target 
neighbor Prob. Dist. (𝑠%, 𝑡)

§ 𝑁%(𝑢) are the nodes visited by the biased walk
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§ Overview

§ Node-level Network Embedding
• Random walk-based Node Embeddings (DeepWalk / node2vec)

§ Graph Neural Network (GNN)
• Graph Convolutional Neural Network (GCN)
• Graph Attention Network (GAT)
• Relational GCN
• GraphSAGE
• Deep Graph Infomax (DGI)
• GNNs with Edge Embeddings

Outline
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§ Maps each node to a low-dimensional vector

Recall: Encoder

𝐸𝑁𝐶 𝑣 = 𝒛!
𝑑-dimensional embedding vector

Node in the input graph

§ Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

𝐸𝑁𝐶 𝑣 = 𝒛! = 𝒁 ⋅ 𝑣 𝒁 ∈ 𝑅!×|$|

𝑑

|𝑉|

𝑣 ∈ 𝐼|$|

𝑣 =

0

0

0

1

0

0

0

0

ex) 𝑛𝑜𝑑𝑒 4

Each node is assigned a unique
embedding vector (i.e., we directly 

optimize the embedding of each node)

This lecture: Deep encoder
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§ Deep Encoder = Graph neural network (GNN)

Deep graph encoder

𝐸𝑁𝐶 𝑣 = 𝒛!

𝐸𝑁𝐶 𝑣 =
Multiple layers of non-linear 

transformations-based 
on graph structure

Shallow model

Deep model

Graph 
convolution

Graph 
convolution

• Node embedding
• Graph embedding
• Subgraph embedding
• Edge embedding
• …

Can we use existing deep learning models? e.g., CNN, RNN, etc
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§ Existing deep neural networks are designed for data with regular-structure (grid or sequence)
• CNNs for fixed-size images/grids …

Challenges of graph representation learning

§ Graphs are very complex
• Arbitrary structures (no spatial locality like grids / no fixed orderings)
• Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
• Large-scale: More than millions of nodes and billions of edges

• RNNs for text/sequences …

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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§ Convolutional filters
• Local feature detectors
• A feature is learned in each local receptive field by a convolutional filter

Background: Convolutional neural networks for images

(Figure credit) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN on an image
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§ How should we define local receptive fields on graphs?
• Local subgraphs

From images to graphs: Local receptive field on graphs

Image Graph

(Figure credit) https://deepgraphlearning.github.io/coursewebsite/schedule

§ Idea: Transform information from the neighboring nodes and combine it
• Step 1: For each node 𝑣) , transform “messages” from neighbors 𝑁 𝑖

• 𝑊&ℎ& for 𝑣& ∈ 𝑁(𝑖), ℎ&: “Message” from 𝑣&
• Step 2: Add them up: ∑*$∈+())𝑊/ℎ/

Graphs look like this

§ There is no fixed notion of locality 
or sliding window on the graph

§ No order among neighboring nodes
• Permutation invariant
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§ Idea: Node’s neighborhood defines a computation graph
• Messages contain relational information + attribute information

Graph Convolutional Network (GCN)

Determine node 
computation graph

Propagate messages and
transform information

Learn how to propagate information across the graph to compute node features

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ Generate node embeddings based on local network neighborhoods

§ Neighborhood aggregation
• Nodes aggregate information from their neighbors using neural networks
• Every node defines a computation graph based on its neighborhood

GCN: Neighborhood aggregation

Input graph Neural networks

Neighborhood
Aggregation

…

§ Things to consider
• 1. What kind of neural 

network?
• 2. How do we aggregate 

neighboring nodes?

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ 1. What kind of neural network?
• Simple multiplication of weight matrices (𝑩 and 𝑾)

GCN: Basic approach

𝒉𝒗
(cdO) = 𝜎 𝑾c 0

/∈J !

𝒉/
c

𝑁 𝑣 + 𝑩c𝒉!
c

∀𝑙 ∈ {0,1, … , 𝐿 − 1},

𝒛! = 𝒉!
(e)

𝒉!f = 𝒙!

Weight matrix

Average of neighboring nodes’ 
previous layer embeddings

Embedding of 𝒗 at layer 𝒍 Total number of layers

Final embedding of 𝒗

Initial embedding of 𝒗

Feature of node 𝒗 How do we train the 
embeddings?

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

…

§ 2. What kind of aggregation?
• Average
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𝒉𝒗
(=21) = 𝜎 𝑾= 7

%∈+ *

𝒉%
=

𝑁 𝑣 + 𝑩=𝒉*
=

§ GCN can be efficiently computed in a matrix form

GCN: Matrix formulation

∀𝑙 ∈ {0,1, … , 𝐿 − 1},

𝒛𝒗 = 𝒉𝒗
(𝑳)𝒉𝒗𝟎 = 𝒙𝒗 ,

𝑫A1𝑨𝑯(=) (Matrix form)

𝑯(=21) = 𝜎(n𝑨𝑯 = 𝑾=
. +𝑯 = 𝑩=.)

𝑯(BA1)

𝒉)
(BA1)

7
%∈+ *

𝒉%
= = 𝑨*𝑯(=)

𝑫*,* = 𝐷𝑒𝑔 𝑣 = |𝑁 𝑣 |

𝑫*,*A1 =
1

|𝑁 𝑣 |

𝑫A1

𝑫),)A1
n𝑨 = 𝑫A1𝑨where

Neighborhood aggregation Self transformation

Since n𝑨 is sparse, sparse matrix multiplication 
can be used (efficient)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

…
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§ We need to define the loss function on the embeddings

§ We can feed the final embeddings 𝒛𝒗 into any loss function and run SGD to train the weight parameters

GCN: Training

§ 1) Supervised loss
min
(
K
!∈&

𝓛(𝑦!, 𝑓( 𝒛! )

§ 2) Unsupervised loss
• No node label available
• We can use the graph structure as the supervision

• e.g., adjacency information
• In this case, 𝓛 is cross entropy (𝑨',) = 1 if an edge exists between node 𝑣 and node 𝑢, otherwise 0)

• 𝑦*: Label of node 𝑣
• 𝑓D: Classifier with parameter 𝜃
• 𝓛 could be squared error if 𝑦 is real number (regression), or cross entropy if 𝑦 is categorical (classification)

min
(

K
!,#∈&

𝓛(𝑨!,#, 𝑓( 𝒛!, 𝒛# ) 𝑓D: Encoder 

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

§ Types of loss function: 1) Supervised loss, 2) Unsupervised loss



50

§ Directly train the model for a supervised task (e.g., node classification)

GCN: Supervised training

Adjacency matrix

Attribute matrix Partial label

Node embedding 
matrix

Prediction

ℒ = −K
!,∈&

𝑦! log 𝑓( 𝒛! + 1 − 𝑦! log(1 − 𝑓( 𝒛! )

Model predictionGround truth label

v𝑦 = 𝑓D(𝒛*)

𝒁

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ As we are not given node labels, we define our task to reconstruct the graph, i.e., Adjacency matrix

GCN: Unsupervised training

Adjacency matrix

Attribute matrix Partial label

ℒ = − K
!,#∈&

𝑨!,# log 𝑓( 𝒛!, 𝒛# + 1 − 𝑨!,# log(1 − 𝑓( 𝒛!, 𝒛# )

Model predictionGround truth label

Node embedding 
matrix

𝒁

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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§ Idea: Treat different neighboring nodes differently

Graph Attention Networks (GAT) (1/3)

𝒉!
(,-.) = 𝜎 𝑾, K

#∈0 !

𝒉#
,

𝑁 𝑣
+ 𝑩,𝒉!

, (GCN)𝒉!
(cdO) = 𝜎 𝑾c 0

/∈J ! ∪!

𝛼!/𝒉/
(c)

Attention weight

• 𝛼*%: Importance of node 𝑢 to node 𝑣 as its neighboring node

§ In GCN, the importance was heuristically defined based on the structural property of the graph (node degree)
• 𝛼*% =

1
|+(*)|

: Does not depend on the neighbors (it is fixed)

• All neighboring nodes 𝑢 ∈ 𝑁 𝑣 are equally important to node 𝑣

Not all neighbors are equally important!

Veličković, Petar, et al. "Graph attention networks." ICLR 2018
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§ Idea: Treat different neighboring nodes differently

Graph Attention Networks (GAT) (2/3)

𝒉!
(cdO) = 𝜎 𝑾c 0

/∈J ! ∪!

𝛼!/𝒉/
(c)

Attention weight

• 𝛼*%: Importance of node 𝑢 to node 𝑣 as its neighboring node

𝑒!/ = 𝑎(𝑾c𝒉!
c ,𝑾c𝒉/

c )

§ Computing the attention weight

𝛼!/ =
exp(𝑒!/)

∑P∈J(!) exp(𝑒!P)
(Normalization)

𝑒12 = 𝑎(𝑾,3.𝒉1
,3. ,𝑾,3.𝒉2

,3. )

(Importance of node 𝑢’s 
message to node 𝑣)

How do we define 𝒂 ⋅ ?
Veličković, Petar, et al. "Graph attention networks." ICLR 2018
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Graph Attention Networks (GAT) (3/3)

𝑒!/ = 𝑎(𝑾c𝒉!
c ,𝑾c𝒉/

c ) (Importance of node 𝑢’s message to node 𝑣)

= Linear(Concat 𝑾c𝒉!
c ,𝑾c𝒉/

c )
Parameters of Linear layer is jointly trained 
end-to-end with other parameters of GAT

§ Defining the function 𝒂 ⋅

§ Multi-head attention (Introduced in Transformer)

• Create multiple attention scores using multiple copies of parameters

𝒉*
(=) 1 = 𝜎 𝑾= 7

%∈+ * ∪*

𝛼*%
[1]𝒉%

(=)

𝒉*
(=) 2 = 𝜎 𝑾= 7

%∈+ * ∪*

𝛼*%
[0]𝒉%

(=)

𝒉*
(=) 3 = 𝜎 𝑾= 7

%∈+ * ∪*

𝛼*%
[7]𝒉%

(=)

𝛼*% =
exp(𝑒%*)

∑B∈+(*) exp(𝑒*B)

𝒉*
(=) = AGG(𝒉*

= 1 , 𝒉*
= 2 , 𝒉*

(=) 3 )

The final embedding aggregates the outputs 
of multi-head attention
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§ Knowledge graph is a type of multiplex network
• Nodes are entities, the edges are relations labeled with their types

R-GCN: RELATIONAL GCN

𝒉!
(,-.) = 𝜎 𝑾, K

#∈0 !

𝒉#
,

𝑁 𝑣 + 𝑩,𝒉!
, (GCN)

𝒉!
(,-.) = 𝜎 K

4∈%

𝑾,
4 K
#∈0 !

𝒉#
,

𝑁 𝑣
+ 𝑩,𝒉!

, (R-GCN)

Schlichtkrull, Michael, et al. “Modeling Relational Data with Graph Convolutional Networks.” ESWC 2018
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§ Generalization of GCN/GAT
• So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

GraphSAGE (1/2)

𝒉!
(cdO) = 𝜎 𝑾c 0

/∈J !

𝒉/
c

𝑁 𝑣
+ 𝑩c𝒉!

c

Average of neighboring nodes

𝒉!
(cdO) = 𝜎 𝑾c ⋅ AGG 𝒉/

c |𝑢 ∈ 𝑁 𝑣 ,𝑩c𝒉!
c

Generalized representation

Add self representation

Generalized representation

𝒉!
(cdO) = 𝜎 𝑾c 0

/∈J ! ∪!

𝛼!/𝒉/
(c)

Attention weight

GCN GAT

GraphSAGE

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS 2017
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§ Generalization of GCN/GAT
• So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

GraphSAGE (2/2)

𝒉!
(cdO) = 𝜎 𝑾c ⋅ AGG 𝒉/

c |𝑢 ∈ 𝑁 𝑣 ,𝑩c𝒉!
c

Generalized representation Generalized representation
(Concatenation here)

§ Variants of AGG
• Mean: Same as GCN

• AGG = ∑)∈+ '
𝒉&
'

+ '

• Pool: Transform neighbor vectors and apply symmetric vector function

• AGG = 𝛾 MLP(𝒉)
(.))|𝑢 ∈ 𝑁 𝑣 , where 𝛾 is element-wise mean/max/min

• LSTM: Apply LSTM to shuffled neighbors
• AGG = LSTM 𝒉)

(.)|𝑢 ∈ 𝜋(𝑁 𝑣 )

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS 2017
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§ GNN layer = 1) Message + 2) Aggregation

§ Compress a set of vectors into a single vector

A GNN layer: Overview

𝒉'
(.01) = 𝜎 𝑾. D

)∈+ '

𝒉)
.

𝑁 𝑣
+ 𝑩.𝒉'

.

𝒉*
(=21) = 𝜎 𝑾= 7

%∈+ * ∪*

𝛼*%𝒉%
(=)

𝒉*
(=21) = 𝜎 𝑾= ⋅ AGG 𝒉%

= |𝑢 ∈ 𝑁 𝑣 , 𝑩=𝒉*
=

(GCN)

(GAT)

(GraphSAGE)

§ (1) Message computation
• Message function: 𝒎%

(=) = MSG = (𝒉%
= )

• Example: A linear layer 𝒎%
(=) = 𝑾=𝒉%

(=)

§ (2) Aggregation
• 𝒉*

= = AGG 𝒎%
= |𝑢 ∈ 𝑁 𝑣

• Example: SUM(),MEAN(), or MAX() aggregator

• 𝒉'
. = SUM 𝒎)

. |𝑢 ∈ 𝑁 𝑣 = ∑)∈+ ' 𝑾.𝒉)
.

= ∑%∈+ * 𝒎%
=

§ Different types of GNN layers
• GCN, GraphSAGE, GAT, …
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§ Inductive learning: We can obtain embeddings for nodes that have not appeared in the training time
• e.g., In Amazon, new users are consistently added to the system, and it is impractical to re-train the system to get 

the embeddings for the new users

Inductive capability of GNN

§ This is possible because we do not train an embedding matrix as done in Deepwalk/node2vec

§ Instead, we train aggregator and transformer
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§ Measures the amount of information that two variables share

§ If X and Y are independent, then 𝑃56 = 𝑃5𝑃6 → in this case, MI = 0

§ High MI? → One variable is always indicative of the other variable

§ Recently, scalable estimation of mutual information was made both possible and practical through Mutual 
Information Neural Estimation (MINE) [1]

Background: Mutual Information (MI)

𝐼 𝑋; 𝑌 = 𝔼H%& log
𝑃IJ
𝑃I𝑃J

= 𝐷KL 𝑃IJ||𝑃I𝑃J

Belghazi, Mohamed Ishmael, et al. "Mutual information neural estimation." ICML 2018
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§ Unsupervised representation learning method for image data

§ Intuition: Maximize mutual information (MI) between local patches and the global representation of an 
image

Background: Deep infomax

−

+

Deep Infomax (Hjelm et al, 2019)

Discriminator tries to discriminate 
between “Real” and “Fake”

Hjelm, R. Devon, et al. "Learning deep representations by mutual information estimation and maximization." ICLR 2019
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§ Deep Graph Infomax (DGI) applies Deep Infomax on graph domain

§ Unsupervised graph representation learning method that considers node features

§ Notations
• 𝑋 = {�⃗�1, �⃗�0, … , �⃗�+}: A set of node features (𝑁: num. nodes)
• 𝐴 ∈ 𝑅+×+: Adjacency matrix

Deep Graph Infomax (DGI) (1/2)

Analogy: Local patch representation in an image == Node representation in a graph

§ Learn a GCN encoder
• Generates node representations by repeated aggregation over local node neighborhoods

• ℎ) summarizes a patch of the graph centered around node 𝑖 (≈ patch representation)

Velickovic, Petar, et al. "Deep Graph Infomax." ICLR 2019
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§ Unsupervised training of GNN considering the local and global structure of the graph

Deep Graph Infomax (DGI) (2/2)

GCN

Global information

Local 
information

Maximizes the mutual information between the local patches and 
the graph-level global representation

Velickovic, Petar, et al. "Deep Graph Infomax." ICLR 2019
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§ Motivation: Edges may also contain attributes
• e.g., contents of papers written together by two authors

GNNs with edge embeddings

Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML 2017
Kipf, Thomas, et al. "Neural relational inference for interacting systems." ICML 2018
Gong, Liyu, and Qiang Cheng. "Exploiting edge features for graph neural networks." CVPR 2019.

https://www.youtube.com/watch?v=mdWQYYapvR8

https://www.youtube.com/watch?v=mdWQYYapvR8
https://www.youtube.com/watch?v=mdWQYYapvR8
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§ Overview

§ Node-level Network Embedding
• Random walk-based Node Embeddings (DeepWalk / node2vec)

§ Graph Neural Network (GNN)
• Graph Convolutional Neural Network (GCN)
• Graph Attention Network (GAT)
• GraphSAGE
• Deep Graph Infomax (DGI)
• GNNs with Edge Embeddings

Conclusion
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§ Material property prediction
• Neural message passing for quantum chemistry. ICML 2017
• Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. NeurIPS 2017
• Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 

2018
• Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019
• Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry 

Chemical Physics 2020
• Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
• Predicting Density of States via Multi-modal Transformer. ICLR Workshop 2023

§ Extrapolation
• How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
• Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022

Papers
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§ Molecules can be represented as a graph with node features and edge features
• Node features: atom type, atom charges… 
• Edge features: valence bond type… 
• However, sometimes, we also know the 3D positions 𝒙𝒊, which is actually more informative

Molecular Graphs
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§ Unified various graph neural network and graph convolutional 
network approaches

Message Passing Neural Network

Neural message passing for quantum chemistry. ICML 2017

𝑣

𝑤1

𝑒*N'

𝒉*O

𝒉N'
O

𝑤0 𝑤7

𝑀O(𝒉*O , 𝒉N'
O , 𝑒*N') Neighbor of 𝑣

Edge embedding
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§ A geometric graph 𝐺 = (𝐴, 𝑆, 𝑋) is a graph where each node is embedded in 𝑑-dimensional 
Euclidean space:

Geometric Graphs

• 𝐴: an 𝑛×𝑛 adjacency matrix
• 𝑆 ∈ 𝑅P×&: Scalar features (atom type, atom charges, …)
• 𝑋 ∈ 𝑅P×!: tensor features, e.g., coordinates

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ Supervised Learning: Prediction
• Properties prediction
• 3D Protein-ligand interaction (binding)

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ Supervised Learning: Structured Prediction
• Molecular Simulation

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf



74

§ Generative Models
• Drug or material design

Broad Impact on Sciences

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf
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§ To describe geometric graphs, we use coordinate systems
• (1) and (2) use different coordinate systems to describe the same molecular geometry. 

§ We can describe the transform between coordinate systems with symmetries of Euclidean space
• 3D rotations, translations

Why is it hard?

http://web.stanford.edu/class/cs224w/slides/17-geometric.pdf

However, output of traditional GNNs given (1) and (2) are completely different!
à Enforcing symmetry is crucial (Invariant GNNs)
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§ Input
• Feature representations of 𝑛 objects 𝑋= = (𝒙1= , … , 𝒙P= ) with 𝒙)= ∈ 𝑅5

• At locations 𝑅 = (𝒓1, … , 𝒓P) with 𝒓) ∈ 𝑅8 (𝐷 = 3 for 3-dim coordinates)

§ Output
• Molecular total energy 𝐸(𝒓1, … , 𝒓P)
• Forces 𝐹 = (𝒓1, … , 𝒓P) acting on each atom

Schnet: Overview

• A filter generating function 𝑊=: 𝑅8 → 𝑅5 is determined by 
the relative position from neighbor atoms 𝑗 to 𝑖

• ◦ is the element-wise multiplication

§ SchNet updates the node embeddings at the 𝑙-th layer by message passing layers

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions, NeurIPS 2017
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§𝑊 is invariant by scalarizing relative positions with relative distances ( 𝑟I − 𝑟J = 𝑟IJ = 𝑑IJ) 
• ‖𝑟)/‖ is invariant to rotations and translations

§ Hence, each message passing layer 𝑊K is invariant

à Aggregated node embeddings

à Node embeddings are invariant!

Schnet: Invariance

is invariant

§ Since 𝑑IJ is 1-dimensional, we expand to a higher dimension (i.e., 300-dim) via radial basis function

• 𝜇B is chosen every 0.1A within 0𝐴 ≤ 𝜇B ≤ 30𝐴 and 𝛾 = 10𝐴
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Crystalline Materials

CrystalsMolecules
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§ Goal: Predict material properties of periodic crystal systems

§ Idea: Represent the crystal structure by a crystal graph that encodes both atomic information 
and bonding interactions between atoms (Distance between atoms à Edges in a crystal graph)

Crystal Graph Convolutional Neural Networks (CGCNN)

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties, Phys. Rev. Lett. 2018

Undirected multigraph 
- Multiple edges between the same pair of nodes
- Considers lattice periodicity

Asymmetric unit
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§ Motivation
• 1) Existing work either on molecular and crystal datasets (solved by adopting graph networks)
• 2) Global state (e.g., temperature) of each molecule/crystal is overlooked

• Important for predicting state-dependent properties such as the free energy

§ Considers topological distance and spatial distance (Manual features)

MatErials Graph Network (MEGNet)

Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019
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§ Motivation: Existing studies do not effectively differentiate the contributions from different atoms
• Existing studies only emphasized on capturing local atomic environment

§ Idea: Global attention (Global information – i) Entire crystal graph, ii) Crystal node’s location in graph)

GATGNN

Type 1 (ratio amount 
of each element)

Type 2

Type 1

Type 2

Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry Chemical Physics 2020

GAT + edge information
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§ Symmetry of Inputs
• We want our GNNs to see (1) and (2) as the same system though described differently

à Symmetry-aware GNNs

Symmetry

§ Symmetry of Outputs
• Beyond input space, output can also be tensors
• Example: simulation (force prediction)

• Given a molecule and a rotated copy, predicted forces should be the same up to rotation 
• i.e., Predicted forces are equivariant to rotation



83

§ Formal definition of Equivariance
• A function 𝐹: 𝑋 → 𝑌 is equivariant, if for a transformation ρ it satisfies:

Equivariance

𝐹 ∘ 𝜌 𝑥 = 𝜌 ∘ 𝐹(𝑥)

• The equation says that applying 𝜌 on the input has the same effect as applying it to the output.

Definition of Invariance
- A function 𝐹: 𝑋 → 𝑌 is invariant if for a 
transformation ρ it satisfies:

𝐹 ∘ 𝜌 𝑥 = 𝐹(𝑥)
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§ Motivation: Can we preserve all geometric information of the input?

§ Idea: Apply Euclidean neural networks (Capture full crystal symmetry)
• Equivariant to 3D rotations, translations, and inversion

• (b) Node feature: Mass weighted one-hot encoding
• (c) Edge feature: Distance between atoms

E(3)NN

Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
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Density of States Prediction of 
Crystalline Materials via Prompt-guided 
Multi-Modal Transformer
Namkyeong Lee, Heewoong Noh, Sungwon Kim, Dongmin Hyun, Gyoung S. Na, Chanyoung Park
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Other physical 
propertiesAtomic Configuration

Kohn-Sham equation DOS,
Energy levels &
wavefunctionsMachine Learning

Total energy &
atomic forces

Primary DFT output Secondary DFT output Tertiary DFT output

§ DFT�calculations�are�used�to�determine the�mechanisms�of�chemical�reactions�that�are�difficult�to�
experimentally�determine�by�considering�the�movements�and�reactions�of�electrons�within�atoms

§ In�this�work,�we�adopt�GNNs�to�approximate�Kohn-Sham�Equation�
to�predict�DOS

Density Functional Theory (DFT)

§However,�it�is�difficult�and�computationally�expensive�to�compute�DFT�outputs�based�on�
Kohn-Sham�equation

Source: Wikipedia

Main�assumption:�DOS�is�related�to�a�sequence�of�energy
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§ Idea: DOS prediction = Graph-to-Sequence task

Consider DOS as a sequence

Graph�
Encoder

Sequence�
Decoder

Input�:�Crystal�Structure Output�:�Sequence
Graph-to-Sequence Model
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Baseline methods

Baseline�1:�CGCNN

§ Baseline�1�- CGCNN:�Use�Crystal�Graph�Convolution�[1]�to�predict�201�DOS�values�at�once

[1] XIE, Tian; GROSSMAN, Jeffrey C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical review letters, 2018, 120.14: 145301.

Baseline�2:�CGGRU

§ Performance:�CGGRU�>�CGCNN�(2%�Gap�in�MSE)

§ Key�Takeaways: Sequential modeling�is�important

• We�need�to�explicitly�capture�the�relationship�between�energies

• What�about�adopting�Transformer?

§ Baseline�2�- CGGRU:�Use�graph�embedding�as�the�initial�state�of�GRU�and�sequentially�predict�DOS�given�
energy�embeddings

DOS

DOS

Challenge:�Input�types�are�different�(Different�modality)
• Modality:�Graph�≠ Energy
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Multimodal transformer

Multi-modal�Machine�Translation Multi-modal�Transformer

§ How�can�we�perform�machine�translation�given�both�image�and�text�data?
• Multi-modal�Machine�Translation

§ Multi-modal�transformer�assigns�Query,�Key,�Value�for�different�modalities
• Query:�Text

• Key,�Value:�Image

Input�1
(Image)

Input�2
(Text)

Output
(Text)

§ We�refer�to�the�interaction�between�Query�and�Key,�and�combine�with�Value�to�get�Query�embedding

à Multi-modal�Transformer
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Preliminary: Prompt Tuning

§ How�to�effectively�fine-tune�pre-trained�models(LLMs)�for�downstream�tasks?
• Prompt�Design�(e.g.�GPT-3)

à Fine-Tuning�à Prompt�Design�à Prompt�Tuning

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html

ex)�Sentiment�Classification�Task
• Finetuning:�“This�movie�was�amazing!”�à Positive
• Prompt design:�Engineered�prompt�+�Input�text

Tunable�Soft-prompts

Concatenated

Our�idea:�There�are�7�Widely�known�Crystal�Systems
• i.e.,�Cubic,�Hexagonal,�…,�Triclinic
• Introduce�7�learnable prompts 𝑃 ∈ ℝ7×$2

§ Incorporating�structural�information�to�the�model�by�injecting�prompts,�not�naively�concatenating

Is�the�following�movie�review�
positive�or�negative?”

“This�movie�was�amazing!”�+

Engineered Prompt Input text

• Prompt tuning:�Tunable�soft�prompt�+�Input�text

https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html
https://ai.googleblog.com/2022/02/guiding-frozen-language-models-with.html
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Our proposed method: Prompt-guided DOSTransformer

§ Query:�Energy�/�Key,�Value:�Graph�(Atom)

§ We�determine�which�atom�to�focus�on�at�each�energy�level�for�DOS�prediction

§ We�utilize�learnable�prompts�to�guide�the�model�to�learn�the�crystal�structural�system-specific�interaction�
between�materials�and�energies

Proposed�Model
(Prompt-guided�DOSTransformer)

Encoder

Decoder

Input

Output

Prompts
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§ Graph�Network:�graph-to-graph�function
• Input: graph, Output: graph

• Structure�of�input�and�output are�equivalent

• MLP�is�used�to�represent�node/edge/graph�of�the�output

• Graph�network�can�model�the�interaction�between�nodes�

• We can�stack�multiple�blocks�of�graph�network

CRYSTAL ENCODER

Architecture of�Graph�Network�block

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261 (2018).
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§ Cross-Attention

§ Obtain crystal-specific energy embedding 𝑬K

PROMPT-GUIDED
MULTI-MODAL TRANSFORMER
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§ Global Self-Attention

§ System Self-Attention with Crystal System Prompts

PROMPT-GUIDED
MULTI-MODAL TRANSFORMER

Energy embedding Sum-pooled representation of crystal 𝑖

Learnable prompts representing one of the 7 crystal systems
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ENERGY DECODER

Predicted DOS of crystal 𝑖 at energy level 𝑗

Crystal-specific energy embedding of crystal 𝑖 at energy level 𝑗

MLP for predicting DOS 
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Our proposed method: Prompt-guided DOSTransformer

§ Using�RMSE�loss�&�2�Forward�Passes�(System�and�Global�energy�embedding)

Proposed�Model
(Prompt-guided�DOSTransformer)

Input

Output

Total training loss

Crystal System loss

Balancing termGlobal loss
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Result: In-distribution

• It�is�beneficial�to�consider�the�energy�level
• However,�a�naïve�consideration�is�not�much�helpful

• For�Phonon�DOS,�predicting�Bulk�Modulus�based�on�the�output�of�our�model�is�the�best

• For�Electron�DOS,�predicting�Band�Gap,�Fermi�Energy�based�on�the�output�of�our�model�is�the�best

: Phonon DOS : Electron DOS
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Result: Out-of-distribution

• DOSTransformer performs�well�in OOD

§ Scenario 1 - Train: binary and ternary / Test: Unary, Quaternary, and Quinary

§ Scenario 2 - Train: Cubic, Hexagonal, Tetragonal, Trigonal, and Orthorhombic / Test: rest

• For�Scenario�2:�As�no�prompts�are�available�
for�unseen�crystal�systems,�we�use�the�mean-
pooled�representation�of�the�trained�prompts

• i.e.,�mean�of�cubic,�hexagonal,�tetragonal,�
trigonal�and�orthorhombic
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Result: Fine-tuning in OOD scenario 2

• Additional�fine-tuning�achieves�performance�gain�for�all�models
• However,�it�was�marginal�due�to�a�limited�number�of�materials�used�for�fine-tuning

• Only�fine-tuning�(prompts�&�decoder)�model�achieves�more�performance�gain�compared�to�fine-tuning�the�
whole�model

• Fine-tuning�only�prompts�enables�the�model�to�additionally�learn�from�few�new�samples�while�fine-tuning�all�incur�
overfitting�easily

Fine-tuning on 
10 % training data Various training data ratio for Fine-tuning

Fine-tuning all model 
parameters of DOSTransformer

Fine-tuning only the prompt and 
decoder of DOSTransformer
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Introduction: Extrapolation

§ Goal: Predict unseen data outside the training distribution
§ Extrapolation is challenging because the input data usually follows an unknown distribution
§ However, extrapolation is common in scientific applications in which discovering unobserved scientific 

knowledge is crucial

Training
distribution

Training samples

Unknown
distribution

New structures

O
bs

er
ve

d 
va

lu
e

Time

Trained patterns Unknown patterns

Material discovery Time-series forecasting
(e.g., geomagnetic storm, network attack, and chemical spectrum)
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Formal Definition of Extrapolation in Machine Learning

§ Given: Prediction model 𝑓:𝒳 → ℝ trained on a training distribution 𝒟
§ Goal: Minimize the following extrapolation error 𝐿3

- (𝒙, 𝑦): A sample from out of training distribution 𝒳\𝒟

§ Machine learning achieved remarkable extrapolation performance in computer vision
§ However, extrapolation in scientific applications is still far from satisfactory

𝐿! = 𝔼 𝒙,$ ~𝒳\𝒟[𝐿)(𝑦, 𝑓 𝒙 )]
Loss function (Cross entropy, MSE)

Target responseInput data

Prediction model

Extrapolation 
Error

Training distribution

Data distribution
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Why is Extrapolation Difficult in Scientific Data?

Crystal structures Band gaps (eV)SiO! (Trigonal, 162)

SiO! (Trigonal, 167) 4.51

TiFe! (Hexagonal, 194)

0

Two similar structures may have completely different physical properties, 
whereas two completely different structures may have the same physical property

§ Nonlinear input-to-target relationship
§ Physical and chemical systems have severe nonlinear relationships with their properties.
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Image Dataset vs. Scientific Dataset

105

§ T-SNE plots of MNIST and Material Project (MP) datasets
§ Each point indicates an image or a material with target response (label) denoted by colors.

§ MNIST: class label
§ MP dataset: band gap

Similar images share similar labels Similar materials do not 
necessarily share similar labels
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How Neural Networks Extrapolate (Xu et al, ICLR21)

§ Theoretical findings in extrapolation: Neural networks with ReLU → simple linear regression in the 
extrapolation regime

MLPs converge to linear functions outside the training data range

Xu, Keyulu, et al. "How neural networks extrapolate: From feedforward to graph neural networks." ICLR 2021

Function we want to 
approximate

Model prediction in 
extrapolation regime

Extrapolation

§ Proposed solution: Remove nonlinearity from the data itself to linearize the problem
§ Limitation: Requires domain knowledge to remove nonlinearity, and task-specific / data-specific
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§ Material property prediction
• Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. NeurIPS 2017
• Neural message passing for quantum chemistry. ICML 2017
• Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 

2018
• Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019
• Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry 

Chemical Physics 2020
• Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
• Predicting Density of States via Multi-modal Transformer. ICLR Workshop 2023

§ Extrapolation
• How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
• Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022

Papers



Nonlinearity Encoding for 
Extrapolation of Neural Networks
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Related Work on Extrapolation

§ Representation learning 
§ Pros: Universally applicable method
§ Cons: Constraints on data distributions

§ Transfer learning 
§ Pros: Problem-specific methods, goal-directed learning
§ Cons: Source datasets, similar data distributions, re-training

§ Graph reformulation 
§ Pros: Easy to implement, theoretical backgrounds

§ Cons: Manual reformulation, white-box systems

Most existing studies mainly focus on supporting extrapolation rather than learning extrapolation models

Can we learn extrapolation models?
109



Can we learn extrapolation models? 
: Image Dataset vs. Scientific Dataset
§ Heatmap visualization of within- and between-class distances on benchmark image and materials datasets

Prediction task (Classification) DifficultEasy

Image Scientific dataset

Within-class distance (Diagonal) LargeSmall

Prediction tasks can be made easier when,
Two inputs with same label à Small input distance

Distance 
Consistency!
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Distance Consistency (DC)

§ Consistency w.r.t. the distance between the inputs and their target responses
§ e.g., images > materials

§ Extend our argument from classification to regression
§ Assume: Classification with infinite number of classes ≈ regression

Linear regression on synthetic datasets 

High distance consistency à High accuracy (𝑅0 score) à Input-to-target relationship is made simple 

𝑅! 𝑅!

𝑅! 𝑅!

𝑅
!
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Problem Reformulation of Extrapolation

§ We reformulate the extrapolation problem as a representation learning problem aiming to linearize the 
input-to-target relationships

Extrapolation Representation 
Learning

§ Our goal: Increase the distance consistency aiming at simplifying the input-to-target relationships

𝑑(𝑑 𝒙9, 𝒙: − 𝑑 𝑦9, 𝑦: ) K
9;.

0
K

:;.

0
𝑑(𝑑 𝒙9, 𝒙: − 𝑑 𝑦9, 𝑦: )

§ Given: Two pairs of data samples 𝒙) , 𝑦) , (𝒙/ , 𝑦/)

§ Define: The distance between them

`
Consider all 
𝑁8 pairs

We adopt Wasserstein distance to measure the 
distance consistency between input and target

Dist. btw. inputs

Dist. btw. targets
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Nonlinearity Encoding based on Wasserstein Distance

§ For a set of probability measures Π on Ω×Ω, Wasserstein distance is defined by an optimization problem as:

𝑊Q = inf
R∈S

¥
T×T

𝐱 − 𝐲 Q𝜋 𝐱, 𝐲 d𝐱d𝐲
1/Q

§ However, there is a problem in applying Wasserstein distance in our task
§ Wasserstein distance is defined only for the data distributions of the same dimensionality.

Why Wasserstein distance? 
Many scientific data has unknown and arbitrary shaped distributions

§ Our task: Regression
§ Input: Vector (∈ ℝ!)
§ Target: Scalar (∈ ℝ)

Dimension mismatch!
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Nonlinearity Encoding based on Wasserstein Distance

§ Instead, we define distance distribution to apply Wasserstein distance between two distributions of 
different dimensions

Definition) For a 𝑛-dimensional space 𝒳 ⊆ ℝP, distance distribution 𝓚 is defined as a probability 
distribution of pairwise distances 𝒅(𝒙, 𝒙V) for all (𝒙, 𝒙V) ∈ 𝒳×𝒳, where 𝑑:𝒳×𝒳 → [0,∞) is a distance metric.

𝑊Q = inf
R∈S

¥
T×T

𝐱 − 𝐲 Q𝜋 𝐱, 𝐲 d𝐱d𝐲
1/Q

𝑊1(𝒦W , 𝒦X; 𝜋, 𝜃) = inf
R∈S

¥
ℳ×ℳ

𝑟 − 𝑢 𝜋 𝑟, 𝑢 d𝑟d𝑢

𝑟 = 𝑑 𝜙 𝐱; 𝜃 , 𝜙 𝐱9; 𝜃 : Dist. btw input data in embedding space
𝑢 = 𝑑(𝑦, 𝑦9): Dist. btw target data

•
•

Distance consistency btw input and target!

Our goal: Maximize the distance consistency between input and target
à The distance between two inputs should be determined based on the distance between their targets

(𝑝 = 1)
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Problem Definition of Nonlinearity Encoding

Mixed data
distribution

Data distribution in the original feature space Data distribution in the embedding space of ANE

Nonlinearity 
Encoding

§ Our method: Automatic Nonlinearity Encoding (ANE)

Hard Easy
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Optimization: Decomposition of Lagrangian

§ Our problem can be defined as follows:

§ We can define a Lagrangian of the objective function as (refer Kantorovich-Rubinstein duality [6]):

Joint optimization
w.r.t. 𝜽 and 𝝅

𝑟:; = 𝑑 𝜙 𝐱:; 𝜃 , 𝜙 𝐱;; 𝜃 : Dist. btw input data in embedding space

𝑢:; = 𝑑(𝑦:, 𝑦;): Dist. btw target data
•
•

𝜃∗ = argmin
D

7
)[1

+
7

/[1

+
inf
R∈S

¥
ℳ×ℳ

𝑟)/ − 𝑢)/ Q
𝜋 𝑟)/ , 𝑢)/ d𝑟d𝑢

# training data

𝐿) = ∑(*,,)∈𝒩∑ /,0 ∈𝒩\2!" 𝑟*, − 𝑢/0 − 𝑓 𝑟*, − 𝑔 𝑢/0 𝜋(𝑟*, , 𝑢/0) + ∑(*,,)∈𝒩∑ /,0 ∈𝒩\2!" 𝑟*, − 𝑢/0 𝜋(𝑟*, , 𝑢/0)

+∑(*,,)∈𝒩 𝑝 𝑟*, − ∑ /,0 ∈2!" 𝜋 𝑟*, , 𝑢/0 𝑓(𝑟*,) + ∑(*,,)∈𝒩 𝑝 𝑢*, − ∑ /,0 ∈𝒩 𝜋 𝑟/0 , 𝑢*, 𝑔(𝑢*,) + ∑(*,,)∈𝒩∑ /,0 ∈𝒩\2!" 𝜋 𝑟/0 , 𝑢*, 𝑔(𝑢*,),

where 𝒩 = 𝑖, 𝑗 for all 𝑖, 𝑗 ∈ {1, 2, … ,𝑁}}, and 𝐼:; = 𝑘, 𝑞 𝑢:; = 𝑢<= for (𝑘, 𝑞) ∈ 𝒩}.

Pairs with the same target distance 
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Optimization: Model Parameter Optimization

𝑟:; = 𝑑 𝜙 𝐱:; 𝜃 , 𝜙 𝐱;; 𝜃 : Dist. btw input data in embedding space

𝑢:; = 𝑑(𝑦:, 𝑦;): Dist. btw target data
•
•

Enforce distance consistency 
between data pairs!

§ In the end, the representation learning problem to encode the nonlinearity is given by:

𝜃∗ = argmin
D

7
)[1

+
7

/[1

+
inf
R∈S

¥
ℳ×ℳ

𝑟)/ − 𝑢)/ Q
𝜋 𝑟)/ , 𝑢)/ d𝑟d𝑢

𝜃∗ = argmin
D
7

)[1

+
7

/[1

+
𝑟)/ − 𝑢)/
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Optimization: Model Parameter Optimization

ANE

Training dataset
𝒟 = { 𝐱%, 𝐲% , … , (𝐱3 , 𝐲3}

Training of ANE-based prediction model

Training dataset with
nonlinearity encoding

𝒵 = { 𝜙(𝐱%; 𝜃∗), 𝐲% , … , (𝜙(𝐱3; 𝜃∗), 𝐲3}

Prediction 
model

ANE

Prediction 
model

Data-agnostic!
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Experiments

§ Matrix-shaped data
§ Graph-structured data
§ Time-series data
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§ Task: Given mass, position, and velocity of 𝑛 particles, estimate future velocities of 𝑛 particles

Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (1/3)

Physical system of
𝑛 = 3 particles at 𝑡

Position: 𝑥(5), 𝑦(5), 𝑧(5)

Velocity: 𝑣6
(5), 𝑣7

(5), 𝑣8
(5)

Physical system of
𝑛 = 3 particles at 𝑡 + 1

Prediction of
the next state

§ Data preprocessing: 3-dimensional 3-body problem. 𝒙O ∈ ℝ7×\ and 𝒚O ∈ ℝ7×7 ß Matrix-shaped data
§ Simulated 10 datasets
§ Train: Observations in time [0, 80] 
§ Test: Predict velocity in future time (80, 100]

Mass: 𝑚(5)

Position: 𝑥(59%), 𝑦(59%), 𝑧(59%)

Velocity: 𝑣6
(59%), 𝑣7

(59%), 𝑣8
(59%)

Mass: 𝑚(59%)

𝑑-dimension 𝑑-dimension
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Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (2/3)

Direct prediction method GNN-based methods Metric learning-based method

§ Metric: Distance correlation (Corr) between the simulated (ground-truth) and predicted velocities 
§ To measure how accurately the models predict future trends of the velocities

ANE generates input representations that are the most effective to reducing the extrapolation errors
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Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (3/3)

State-of-the-art GNN-based method Ours (ANE-F)
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Extrapolation on Matrix-Shaped Data: 𝑛-Body Problem (3/3)

State-of-the-art GNN-based method Ours (ANE-F)

ANE is better at predicting sudden explosions of velocity
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§ Task: Predict four material properties (Formation energy, Band gap, Shear modulus, Bulk modulus)
§ Discovering novel materials is a fundamental task in various fields (e.g., semiconductor and renewable energy)

Extrapolation on Graph-Structured Data: Materials Property Prediction

𝒱: A set of nodes (atoms)
𝒰: A set of edges (bondings)
𝐗: Node feature matrix
𝐄: Edge feature matrix

Prediction 
model

Physical and chemical
properties of materials

A material can be represented as an attributed graph 𝐺 = (𝒱,𝒰, 𝐗, 𝐄).

§ Data preprocessing
§ MPS dataset: Benchmark materials dataset containing 3,162 materials
§ Train: Materials that contain only two types of elements (i.e., Binary materials)
§ Test: Materials that contain three/four types of elements (i.e., Ternary and quaternary materials)
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Extrapolation on Graph-Structured Data: Materials Property Prediction

§ Metric: 𝑅0 score

ANE-MPNN outperforms state-of-the-art GNNs and metric learning methods

125



§ Task: 1) Predict geomagnetic storm, 2) Detect geomagnetic storm

Extrapolation on Time-Series Data: Geomagnetic Storm Forecasting

ANE-GRU outperforms GRU, and ANE achieved further improvement over metric learning-based approaches

Task 1 Task 2 Vanilla GRU Ours (ANE-GRU)

§ Data preprocessing
§ Dataset: MagNet NASA dataset
§ 1-year geomagnetic storm data is divided into 4 sequential periods (¾ used for training, ¼ used for test)
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§ Task: Predict band gaps of perovskites 
§ c.f.) Perovskite has received significant attention as solar cell materials for renewable energy
§ Infer materials properties of crystal structures containing unseen elemental combinations

§ Data preprocessing
§ Divided HOIP dataset by eliminating the materials that contain specific elements

§ HOIP-HIGH: HOIP – (Germanium (Ge) and Fluorine (F))
§ HOIP-LOW: HOIP – (Lead (Pb) and Iodine (I))

§ Range of band gaps between training and test data is completely different

ANE for Discovering Solar Cell Materials
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§ Metric: 𝑅0 score

ANE for Discovering Solar Cell Materials

Vanilla GCN Ours (ANE-MPNN)

ANE-MPNN roughly captured the relationships, while GCN fails to do so

N/A: negative 𝑅0
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§ Time complexity of the training process of ANE: 𝜃∗ = argmin
D
∑)[1+ ∑][1+ 𝑟)/ − 𝑢)/ → 𝐎(𝑵𝟐)

§ Three sampling strategies to reduce the time complexity:
§ Random sampling: selecting a data point randomly at each iteration
§ 𝒌-NN sampling: selecting 𝑘 nearest data points for an anchor data
§ Hardness sampling: selecting 𝑘 data points based on the training errors (top-𝑘 largest errors)

Sampling Strategies and Extrapolation

Random sampling performs the best despite its simplicity 
(∵ Random sampling = Density-based sampling)
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§ Proposed a data-agnostic embedding method for improving the extrapolation capabilities of ML

Conclusion

§ Maximized distance consistency between the inputs and their targets (Based on Wasserstein distance)
§ The distance between two inputs should be determined based on the distance between their targets

§ Demonstrated the effectiveness in various scientific applications of various data formats 
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§Molecular Relational Learning
• Learn the interaction behavior between a pair of molecules

Introduction: Relational Learning

• Examples
• Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react

• Predicting solubility when a solute and solvent react
• Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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§ General
• Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
• Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
• SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021
• Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

§ Information bottleneck-based
• Graph information bottleneck for subgraph recognition. ICLR 2021
• Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
• Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
• Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

§ Causal inference-based
• Discovering invariant rationales for graph neural networks. ICLR 2022
• Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure.  NeurIPS 2022
• Causal attention for interpretable and generalizable graph classification. KDD 2022
• Shift-robust molecular relational learning with causal substructure. KDD 2023
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§ Causal inference-based
• Discovering invariant rationales for graph neural networks. ICLR 2022
• Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure.  NeurIPS 2022
• Causal attention for interpretable and generalizable graph classification. KDD 2022
• Shift-robust molecular relational learning with causal substructure. KDD 2023

Papers
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§ Many patients take multiple drugs to treat complex or co-existing diseases
• 25% of people ages 65-69 take more than 5 drugs
• 46% of people ages 70-79 take more than 5 drugs 
• Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Polypharmarcy side effect

Charlesworth, Christina J., et al. "Polypharmacy among adults aged 65 years and older in the United States: 1988–2010." Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 70.8 (2015): 989-995.

§ Extremely difficult to identify
• Impossible to test all combinations of drugs
• Side effects not observed in controlled trials

§ 15% of the U.S. population affected
• Annual costs exceed $177 billion

Kantor, Elizabeth D., et al. "Trends in prescription drug use among adults in the United States from 1999-2012." Jama 314.17 (2015): 1818-1830.
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§ Task: Predicting polypharmacy side-effect (Drug-drug interaction)

§ Idea: Construct a multi-modal graph of following relations
• 1. Protein-protein interaction
• 2. Drug-protein interaction
• 3. Drug-drug interaction (polypharmacy side effects; each side effect is an edge of a different type)

Decagon: Overview

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018

Multi-relational edge 
prediction model

Given a drug pair, predict side effects of that drug pair
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§ Observation: Co-prescribed drugs (i.e. drug combinations) tend to have more target proteins in 
common than random drug pairs
• It is important to consider how proteins interact with each other and to be able to model longer chains of (indirect) 

interactions.

Decagon: Exploratory Data Analysis (EDA)

(J
ac

ca
rd

 s
im
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rit

y)

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
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• Encoder: GCN operating on the graph and 
produces embeddings for nodes

• Decoder: Tensor factorization model using these 
embeddings to model polypharmacy side effects

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
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§ Dataset
• Protein-protein interactions: Physical interactions in humans [720 k edges]
• Drug-protein relationships [19 k edges]
• Side effects of drug pairs: National adverse event reporting system [4.6 M edges]
• Additional side information
• Final graph has 966 different edge types

• Multi-relational link prediction

§ Setup
• Construct a heterogeneous graph of all the data
• Side-effect centric evaluation: 

• Train: Fit a model on known side effects of drug pairs
• Test: Given a query drug pair, predict all types of side effects

Decagon: Experiments

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
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Decagon: Results (Side Effect Prediction)

36% average in AP@50 improvement over baselines

Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
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Decagon: Results

Banakh, Iouri, et al. "Severe rhabdomyolysis due to presumed drug interactions between atorvastatin with amlodipine and ticagrelor." Case reports in critical care 2017 (2017).
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§ Solvation free energy
• Change in free energy for a molecule to be transferred from gas phase to a given solvent
• Quantifies solubility of drug molecules

• A large negative value à high solubility
• A lower magnitudes/positive value à poor solubility

Predicting Solvation Free Energy (용매화자유에너지)

https://www.ibric.org/upload/geditor/201704/0.95691900_1493095501.png

Solvation free energy
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§ Task: Predicting solvation free energy

§ Previous studies considered only the solute for solvation free energy prediction and ignored the 
nature of the solvent

CIGIN: Overview

Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020

Phase 1

Phase 2 Phase 3

- Phase 1: Compute inter-atomic interaction 
within both solute and solvent 

- Phase 2: Calculate a solute-solvent 
interaction map

- Phase 3: Predict the solvation free energies
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§ Phase 1: Message Passing Phase

CIGIN: Model Architecture

,

Edge feature

Message function

Neighbors of v

Node feature

Node update function

set2set layer

Final feature of v

§ Phase 2: Interaction Phase

Atom n of solute Atom m of solvent

,

§ Phase 3: Prediction Phase

,
set2set layer set2set layer

= 𝑓&)P_=[𝐶𝑜𝑛𝑐𝑎𝑡 𝐴VV, 𝐵VV ]

Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
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CIGIN: Results

Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
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SSI–DDI

SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021

§ Task: Predicting drug-drug interaction

§ Key idea: Consider substructure instead of whole drugs’ structure
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§ Task: Predicting drug-drug interaction

§ Key idea: Construct a graph-of-graphs

MIRACLE

Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

Trainable weight matrix shared by 
the same type of chemical bond 𝑐:;
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§ General
• Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
• Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
• SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021
• Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

§ Information bottleneck-based
• Graph information bottleneck for subgraph recognition. ICLR 2021
• Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
• Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
• Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

§ Causal inference-based
• Discovering invariant rationales for graph neural networks. ICLR 2022
• Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure.  NeurIPS 2022
• Causal attention for interpretable and generalizable graph classification. KDD 2022
• Shift-robust molecular relational learning with causal substructure. KDD 2023

Papers
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§Molecular Relational Learning
• Learn the interaction behavior between a pair of molecules

Introduction: Relational Learning

• Examples
• Predicting optical properties when a chromophore (Chromophore) and solvent (Solvent) react

• Predicting solubility when a solute and solvent react
• Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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§ Functional Groups
• Specific atomic groups or structures that play an important role in determining the chemical reactivity of 
organic compounds

• Compounds with the same functional group generally have similar properties and undergo similar 
chemical reactions

Introduction: Functional Group

GlucoseAlcohol

Functional Group

• Examples
• The hydroxyl group structure has the characteristic of increasing the polarity of the molecule

à Molecules containing hydroxyl structures, such as alcohol and glucose, commonly have a high 
solubility in water

Hence, it is important to consider functional group for molecular relation learning
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§Molecule à Can be represented as a graph

§ Functional Group à Can be represented as a subgraph

Introduction: Representing Molecules as a Graph

Functional�Group�1

Functional�Group�2

Recently, information theory-based approaches have been proposed to detect important subgraph

Molecule
(=Graph) 

Functional Group
(=Subgraph) 
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§How�can�we�find�an�important�subgraph�based�on�machine�learning�model?

Information Bottleneck

Information Bottleneck Objective

(𝐼(𝑋, 𝑌): Mutual information between X and Y)

Maximize MI between T and Y
à T should contain as much information about Y as possible
à Prediction

Minimize MI between X and T
à T should contain minimal information 
about X

à Compression
X T Y

Compression Prediction

Bottleneck 
Variable

Input
Variable

Output
Variable

§ Solution: Information Bottleneck Theory
• A theoretical approach to the trade-off between information compression and preservation

• Given random variables X and Y , the Information Bottleneck principle aims to compress X to a bottleneck 
random variable T, while keeping the information relevant for predicting Y

• That is, the goal is to obtain T that compresses as much of information contained in X while still being 
able to predict Y
à Widely used to learn noisy robust representation
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§How�can�we�apply�information bottleneck theory�to�graphs?

Graph Information Bottleneck: Overview

𝓖 𝓖𝐈𝐁 Y
Compression Prediction

Bottleneck 
Graph

Input
Graph

Target
Variable

Functional Group

§ Information�Bottleneck�Graph�(IB-Graph)
• To detect a subgraph that maximally preserves the property of the original graph
• Subgraph becomes the bottleneck variable T

à Problem formulation: Find Subgraph 𝐺`4 that is important for predicting Target Y
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Graph Information Bottleneck: Existing studies (1/3)

Graph information bottleneck for subgraph recognition. ICLR 2021

GIB objective

Perform T steps

Final objective

Soft aggregation
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§ Extract a subgraph in terms of edges
• Model an edge based on Bernoulli distribution to perform graph compression

Graph Information Bottleneck: Existing studies (2/3)

Miao, Siqi, Mia Liu, and Pan Li. "Interpretable and generalizable graph learning via stochastic attention mechanism." ICML 2022
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§ Extract a subgraph in terms of nodes
• Inject noise into node embeddings to perform graph compression

Graph Information Bottleneck: Existing studies (3/3)

Yu, Junchi, Jie Cao, and Ran He. "Improving subgraph recognition with variational graph information bottleneck.”CVPR 2022.

However, the existing studies address single-input tasks, hence cannot be applied to 
relational learning tasks with two input graphs



Conditional Graph Information Bottleneck 
for Molecular Relational Learning
Namkyeong Lee, Dongmin Hyun, Gyoung S. Na, Sungwon Kim, Junseok Lee, Chanyoung Park

ICML 2023 - International Conference on Machine Learning
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§ Functional Groups
• Specific atomic groups or structures that play an important role in determining the chemical 
reactivity of organic compounds

• Compounds with the same functional group generally have similar properties and undergo 
similar chemical reactions

Recall: Functional Group

§ On the other hand, the role of functional group varies depending on which solvent the solute
(Chromophore) reacts with
• Examples: C-CF3 structure decreases the solubility of a molecule in water
• However, it is unknown how C-CF3 structure affects the solubility of a molecule in oil

• Hence, it is important to consider the paired solvent when detecting important substructure from solute

C-CF3 Structure

OilWater

Decrease Solubility Unknown

Existing approaches for 
information bottleneck cannot 
capture such a prior knowledge

Solvent
Functional 

group of solute
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§ Conditional�Information�Bottleneck Graph�(CIB-Graph)
• Consider Graph 2 (Solvent) when detecting the important subgraph from Graph 1 (Chromophore)

Proposed Method: Conditional Graph Information Bottleneck

Graph Information 
Bottleneck

Conditional Graph
Information Bottleneck

(CGIB)
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§By proving the following lemma, we show that minimizing the CGIB objective is 
equivalent to detecting task relevant subgraph

Proof of Lemma

Proof of Lemma 4.3

Assuming that  𝒢!, 𝒢"#$! , 𝒢%!, 𝒢&, and Y satisfy the Markov condition (Y, 𝒢%!, 𝒢&) → 𝒢! → 𝒢"#$! ,
we have the following inequality due to data processing inequality:

𝐼 𝒢!; 𝒢"#$! 𝒢& = 𝐼 𝒢"#$! ; 𝒢!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

≥ 𝐼 𝒢"#$! ; Y, 𝒢%!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

= 𝐼 𝒢"#$! ; 𝒢%!, 𝒢& + 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& − 𝐼 𝒢"#$! ; 𝒢&

= 𝐼 𝒢"#$! ; 𝒢%!|𝒢& + 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢&

Suppose that 𝒢%! and Y, 𝒢%! and 𝒢&, and joint random variable (𝒢%!, 𝒢&) and Y are 
independent respectively. Then, for 𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& we have:

By plugging Equation (2) into Equation (1), we have:

𝐼 𝒢!; 𝒢"#$! 𝒢& ≥ 𝐼 𝒢"#$! ; 𝒢%!|𝒢& + 𝐼(𝑌; 𝒢"#$! |𝒢&)

𝐼 𝒢"#$! ; Y|𝒢%!, 𝒢& = 𝐻 𝑌 𝒢%!, 𝒢& − 𝐻 𝑌 𝒢%!, 𝒢"#$! , 𝒢&

≥ 𝐻 𝑌 𝒢& − 𝐻 𝑌 𝒢"#$! , 𝒢&

= 𝐼(𝑌; 𝒢"#$! |𝒢&)

(1)

(2)

By minimizing the CGIB objective function, the model learns a CIB-Graph with the smallest mutual 
information with task-irrelevant noise.

𝐼 𝒢"#$! ; 𝒢%!|𝒢& ≤ −𝐼 𝑌; 𝒢"#$! 𝒢& + 𝐼 𝒢!; 𝒢"#$! 𝒢&∴

Conditional Graph
Information Bottleneck

(CGIB)
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Proposed Method: Conditional Graph Information Bottleneck

Prediction Loss

Compression Loss

Overall procedure: 
Decompose the conditional MI based on the chain rule of MI, and 
then derive the upper bound of the decomposed terms
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∵ Chain rule of mutual information

Directly calculating the mutual Information is intractable; 
Instead, we minimize the upper bound

Proof. By the definition of mutual information and introducing variational approximation 𝑝'(𝑌|𝒢"#$! , 𝒢&) of 
intractable distribution 𝑝(𝑌|𝒢"#$! , 𝒢&), we have:

𝐼 𝑌; 𝒢"#$! , 𝒢& = 𝔼(, 𝒢"#$% , 𝒢& log
+ 𝑌 𝒢"#$! , 𝒢&

+ (

= 𝔼(, 𝒢"#$% , 𝒢& log
+' 𝑌 𝒢"#$! , 𝒢&

+ ( + 𝔼 𝒢"#$
% , 𝒢&[𝑝 𝑌 𝒢"#$! , 𝒢& ||𝑝' 𝑌 𝒢"#$! , 𝒢& ]

≥ 𝔼(, 𝒢"#$% , 𝒢& log
+' 𝑌 𝒢"#$! , 𝒢&

+ (

= 𝔼(, 𝒢"#$% , 𝒢& log 𝑝' 𝑌 𝒢"#$! , 𝒢& + 𝐻(𝑌)

∵ Non-negativity of KL divergence

Proposed Method: Conditional Graph Information Bottleneck

!!
GNN !"

"""!

#"=

GNN

Node 
Interaction !

!! !"

Importance

$#, … , $$!
"#$%&

'!

=

Readout

(%&" (%&# ('()*

Eq
ua

tio
n 

(1
5)

)#, … , )$!
Sampling

*+$%&" *+#

(""|| -"")

("!|| -"!)#!=

R
ea

do
ut

Noise
Proposition. (Upper bound of −I(𝑌; 𝒢"#$! , 𝒢&)) Given a pair of graph (𝒢!, 𝒢&), its label information 𝑌, 
and the learned CIB-graph 𝒢"#$! , we have:

−I(𝑌; 𝒢"#$! , 𝒢&) ≤ 𝔼(, 𝒢"#$% , 𝒢& − log 𝑝' 𝑌 𝒢"#$! , 𝒢&

where 𝑝'(𝑌|𝒢"#$! , 𝒢&) is variational approximation of 𝑝(𝑌|𝒢"#$! , 𝒢&).

- Step 1: Optimizing the prediction loss
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∵ Chain rule of mutual information

Directly calculating the mutual Information is intractable; 
Instead, we minimize the upper bound

Proposed Method: Conditional Graph Information Bottleneck
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Proposition. (Upper bound of −I(𝑌; 𝒢"#$! , 𝒢&)) Given a pair of graph (𝒢!, 𝒢&), its label information 𝑌, 
and the learned CIB-graph 𝒢"#$! , we have:

−I(𝑌; 𝒢"#$! , 𝒢&) ≤ 𝔼(, 𝒢"#$% , 𝒢& − log 𝑝' 𝑌 𝒢"#$! , 𝒢&

where 𝑝'(𝑌|𝒢"#$! , 𝒢&) is variational approximation of 𝑝(𝑌|𝒢"#$! , 𝒢&).

- Step 1: Optimizing the prediction loss

Implementation.
- Consider 𝑝D 𝑌 𝒢abc1 , 𝒢0 as a predictor parameterized by 𝜃, which 
outputs the model prediction 𝑌 based on the input pair (𝒢abc1 , 𝒢0).
- The upper bound is minimized by minimizing the prediction 
loss ℒdefg 𝑌, 𝒢abc1 , 𝒢0
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∵ Chain rule of mutual information

Proposed Method: Conditional Graph Information Bottleneck
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- Step 1: Optimizing the prediction loss

The 2nd term is empirically found to be not helpful

Increasing the contribution of this term deteriorates the model performance

Hence, we removed 𝐼(𝑌; 𝒢0) from the model

We treat  𝑟 Y as fixed spherical Gaussian, 

𝐼(𝑌; 𝒢:) ≤ 𝔼𝒢# 𝐾𝐿(𝑝<(𝑌|𝒢:)||𝑟 𝑌 )

where 𝑟 𝑌 ~𝑁(Y|0, 1)



167

- 𝑳𝐌𝐈𝟏: Compression through Noise Injection
* Injecting noise into unimportant nodes 
à Remaining nodes are important nodes

- 𝑳𝐌𝐈𝟐: Solute Prediction
* Encourage 𝒢abc1 , which is compressed conditioned on 𝒢0, to contain as 
much information about 𝒢0 as possible
* This is the term that arises from the Conditional Mutual Information
à Key to success of CGIB! Enables the conditional information compression 
of CGIB

∵ Chain rule of mutual information

Proposed Method: Conditional Graph Information Bottleneck
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- Step 2: Optimizing the compression loss
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1. Compression through Noise Injection
* Injecting noise into unimportant nodes

HQR : Representation of node i of 𝒢R that contains information about both 𝒢R , 𝒢8

𝑝: = MLP(HQR) : Important of node i of 𝒢R

TQR = 𝜆:HQR + 1 − 𝜆: 𝜀
where 𝜆:~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝:) and 𝜀~𝑁(𝜇S=, 𝜎S=

8 )

Intuition) Unimportant nodes would not affect the model performance 
even if they are replaced with noise

(Replace H>% with noise 𝜀 depending on the important of node i)

Upper bound of I 𝒢"#$! ; 𝒢!, 𝒢&

I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢%,𝒢& − !
& log 𝐴 +

!
&,% 𝐴 +

!
&,% 𝐵

&

≔ ℒ-.% 𝒢"#$! , 𝒢!, 𝒢&

where 𝐴 = ∑/0!,% (1 − 𝜆/)& and 𝐵 =
∑()%
*% 2((4(

%56+%)
&

8+%

Proposed Method: Conditional Graph Information Bottleneck
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- Step 2: Optimizing the compression loss

∵ Chain rule of mutual information
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∵ Chain rule of mutual information
Upper bound of I 𝒢"#$! ; 𝒢!, 𝒢&

I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢%,𝒢& − !
& log 𝐴 +

!
&,% 𝐴 +

!
&,% 𝐵

&

≔ ℒ-.% 𝒢"#$! , 𝒢!, 𝒢&

where 𝐴 = ∑/0!,% (1 − 𝜆/)& and 𝐵 =
∑()%
*% 2((4(

%56+%)
&

8+%

Proof. Given the perturbed graph 𝒢"#$! and its representation 𝑧𝒢"#$% , we assume there is no information loss during the 

readout process, i.e., I 𝑧𝒢"#$% ; 𝒢!, 𝒢& = I 𝒢"#$! ; 𝒢!, 𝒢& .

I 𝑧𝒢"#$% ; 𝒢!, 𝒢& = 𝔼9𝒢"#$% , 𝒢%,𝒢& − log
+- (9𝒢"#$% |𝒢%,𝒢&)

+(9𝒢"#$% )

= 𝔼 𝒢%,𝒢& − log
+- (9𝒢"#$% |𝒢%,𝒢&)

;(9𝒢"#$% ) − 𝔼9𝒢"#$% , 𝒢%,𝒢& 𝐾𝐿(𝑝 𝑧𝒢"#$% ||𝑞 𝑧𝒢"#$% )

≤ 𝔼9𝒢"#$% , 𝒢%,𝒢& 𝐾𝐿(𝑝< (𝑧𝒢"#$% |𝒢!, 𝒢&)||𝑞 𝑧𝒢"#$% ) ∵ Non-negativity of KL divergence

Assuming that 𝑞 𝑧𝒢"#$% is Gaussian distribution. 
The noise 𝜀~𝑁(𝜇𝐇% , 𝜎𝐇%) is sampled from Gaussian distribution where 𝜇𝐇% and 𝜎𝐇% are mean and variance of 𝐇!.

Thus, 𝑞 𝑧𝒢"#$% = 𝑁(𝑁!𝜇𝐇% , 𝑁!𝜎𝐇%)

And, 𝑝 𝑧𝒢"#$% |𝒢!, 𝒢& = 𝑁(𝑁!𝜇𝐇% + ∑/0!,% 𝜆/𝐇/! − ∑/0!,% 𝜆/𝜇𝐇% , ∑/0!,% 1 − 𝜆/
&
𝜎𝐇%
& )

∵ Summation of Gaussian is Gaussian

(1)

(2)

(3)

By plugging Equation (2) and (3) into (1), we have:

−I 𝒢"#$! ; 𝒢!, 𝒢& ≤ 𝔼 𝒢%,𝒢& − !
& log 𝐴 +

!
&,% 𝐴 +

!
&,% 𝐵

& + 𝐶 where 𝐴 = ∑/0!,% (1 − 𝜆/)& and 𝐵 =
∑()%
*% 2((4(

%56+%)
&

8+%

Proposed Method: Conditional Graph Information Bottleneck
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2. Solute Prediction
Encourage 𝒢abc1 , which is compressed conditioned on 𝒢0, to contain as much 
information about 𝒢0 as possible 
Intuition) Make use of 𝒢0 when detecting 𝒢abc1

1) Variational IB-based approach
Derive upper bound similar to the prediction loss

2) Contrastive Learning-based approach
- Minimizing the contrastive loss is proven to be equivalent to maximizing the 
mutual information
- Hence, minimize −𝐼(𝐺efgR ; 𝐺8) by minimizing the contrastive loss à CGIBhijk

Proposed Method: Conditional Graph Information Bottleneck
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- Step 2: Optimizing the compression loss

∵ Chain rule of mutual information
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Experiments: Dataset

§ 1) Chromophore dataset
• Predicting Absorption max, Emission max, Lifetime

§ 2) Solvation Free Energy dataset
• MNSol / FreeSolv / CompSol / Abraham / CombiSolv

§ 3) Drug-Drug Interaction dataset
• ZhangDDI / ChChMiner
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Performance on Molecular Interaction (Regression)

Performance on Drug-Drug Interaction (Classification)

Observations
• Improvement�gap�is�larger�in�
inductive�setting

• ∵ By�detecting�function�group�
that�is�basic�in�nature�à helps�
generalization

Observations
• Outperforms�baselines�on�both�
Molecular�Interaction�/�Drug-Drug�
Interaction�tasks

Result: Main table

Evaluation�on�drugs�unseen�during�training
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Sensitivity Analysis on 𝛽

Observations - Sensitivity Analysis
• 𝛽 = 1.0: Poor performance in general (focus on compression)
• However, the model fails to detect functional group when 𝛽 is too 
small à poor generalization

à Hence, finding an appropriate 𝛽 is crucial

𝛽 Controls Trade-off btw prediction and compression

As 𝛽 increases, Compression > Prediction

Observations - Qualitative analysis 
• 𝛽 = 1.0à CGIB focuses on compression
e.g., CGIB focuses an aromatic ring, which is not relevant to 
chemical reactions
• 𝛽 = 0.01à CGIB focuses on prediction
e.g., CGIB focuses on external part, which generally more 
relevant  to chemical reactions

Result: Analysis on 𝜷 •
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Result: Ablation studies ( )

Importance of IB

Importance of conditional IB

Importance of valid conditional IB

Observations - Ablation Studies
• Considering conditional MI is the key for 
success in relational learning

• A naïve consideration of 𝐺. and 𝐺<
rather performs worse than considering 
𝐺. only

( )
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(c) Chromophore (𝑮𝟏) interacts with various solvents (𝑮𝟐) (e.g., 
Trans-ethyl p-(dimethylamino) cinnamate (EDAC))
Detected parts in chromophore depend on the polarity of solvent

Result: Qualitative analysis

- Case 1: High polarity solvent (Ethanol, THF, 1-hexanol, 1-butanol)
Structure with high polarity is detected (e.g., Oxygen-carbon)
à Interact with high polarity solvent

- Case 2: Low polarity solvent (Benzene solvent)
Structure with low polarity is detected (e.g., Nitrogen-Carbon)
à Interact with low polarity solvent

(a) Chromophore (𝑮𝟏) interact with ordinary solvents (𝑮𝟐)
Focus on external parts à Aligns with domain knowledge

(b) Chromophore (𝑮𝟏) interact with liquid oxygen solvents (𝑮𝟐)
Focus on all parts à Aligns with domain knowledge

Detected structure of Chromophore (G.) depends on the paired solvents (G<) 
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Conclusion

§ Proposed a method for tackling relation learning tasks, which 
are crucial in materials science
• Based on Conditional Information Bottleneck

§ It is crucial to consider Graph 2 (Solvent) when detecting the 
important subgraph from Graph 1 (Chromophore)
• i.e., Make use of 𝒢8 when detecting 𝒢efgR of 𝒢R

§ CGIB has interpretability, which makes it highly practical
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§ General
• Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
• Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
• SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021
• Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

§ Information bottleneck-based
• Graph information bottleneck for subgraph recognition. ICLR 2021
• Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
• Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
• Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

§ Causal inference-based
• Discovering invariant rationales for graph neural networks. ICLR 2022
• Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure.  NeurIPS 2022
• Causal attention for interpretable and generalizable graph classification. KDD 2022
• Shift-robust molecular relational learning with causal substructure. KDD 2023

Papers
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Background Causal Inference

• Due to the empirical process of data collection, 
the data for machine learning is heavily biased

• Context of the given data becomes a 
confounder that misleads the machine learning 
model to learn spurious correlations between 
pixels and labels

Cause
(Wolf) Outcome

Confounder
(Forest)

Causal Inference aims to improve model performance by removing spurious correlations

ex) Spurious correlation between “Forest” and “Lion”
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Background Causal Inference for graph structured data

• Task: Determining whether a graph contains House Motifs

Discovering Invariant Rationales for Graph Neural Networks. ICLR 2022

• Observation: Statistical Shortcuts link the Tree motifs with House motifs

à When facing with out-of-distribution (OOD) data, statistical shortcuts will 
severely deteriorate the model performance (since the shortcuts will change)
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§ Example of spurious correlation in molecule property prediction
• Instead of probing into the causal effect of the functional groups, model focuses on “carbon rings” as 

the cues of the mutagenic class

Background Causal Inference for graph structured data

Mutagenic Scaffold Non-Mutagenic Scaffold

à In fact, “Carbon ring” has no relationship with 
mutagenicity

Carbon ring
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§ Key idea: Causal patterns are stable (invariant) to distribution shift
• Causal patterns (e.g., wolf) to the labels remain stable across environments (e.g., forest, snow), while the relations 

between the shortcut patterns (e.g., forest, snow) and the labels (e.g., contains wolf or not) vary 

Discovering Invariant Rationales for Graph Neural Networks (1/4)

Dependency between 𝑪 and 𝑺
èCreate spurious correlation between 𝑺 and 𝒀
(S←C→Y)

𝑪 𝑮 𝑺
Input graph 𝑮 consists of two disjoint part: 
- Causal part 𝑪 and Non-causal part 𝑺

𝑪 𝑺

Causal part 𝑪 only determines target value 𝒀 𝑪 𝒀

Structure Causal Model 
(SCM)

Discovering Invariant Rationales for Graph Neural Networks. ICLR 2022

Non-causal part

Input 
Graph

Causal part

Ground-Truth Label
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§ Research question: How to get multiple environments from a standard training set?
à Causal intervention

Discovering Invariant Rationales for Graph Neural Networks (2/4)

Generate 𝑠-interventional distribution by doing intervention on 𝑺

Discovering Invariant Rationales for Graph Neural Networks. ICLR 2022

𝐷𝑜(𝑆 = 𝑠)

fix
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1. Minimize the risk under all 𝑠-interventional distributions
2. Minimize variance of risk over different 𝑠-interventional distributions

Discovering Invariant Rationales for Graph Neural Networks (3/4)
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Model Architecture

Rationale Generator
• Split the input graph instance 𝑔 = (𝒱, ℰ) into two 

subgraphs: causal part �̃� and non-causal part �̃�

Distribution Intervener
• Collects non-causal part of all instances into a memory 

bank as n𝕊
• Samples memory �̃�/ ∈ n𝕊 to conduct intervention 𝑑𝑜(S =
�̃�/), constructing an intervened pair (�̃�) , �̃�/)

Optimization

Model Prediction

Discovering Invariant Rationales for Graph Neural Networks (4/4)

Generate mask
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Task: Graph Classification à “How to classify biased graph datasets?”

Model Architecture

Soft Mask Estimation
Separate the causal and shortcut features from the full graphs

Disentanglement
Separate the causal and shortcut features from the full graphs

Causal graph

Trivial graph

Causal graph à Ground truth label prediction

Trivial graph à Random label prediction

Causal Attention for Interpretable and Generalizable Graph Classification (1/2)
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Causal Intervention via Backdoor adjustment

Challenges
1) Confounder set 𝒯 is commonly unobservable and hard to obtain
2) Difficult to directly manipulate graph data (∵Discrete nature)

à Let’s make implicit intervention on representation level!
Structure Causal Model (SCM)

Confounder Set

Backdoor Adjustment

Trivial graph from different graphs

Task: Graph Classification à “How to classify biased graph datasets?”

Causal Attention for Interpretable and Generalizable Graph Classification (2/2)



Shift-Robust Molecular Relational 
Learning with Causal Substructure
Namkyeong Lee, Kanghoon Yoon, Gyoung S. Na, Sein Kim, Chanyoung Park

KDD 2023 - International Conference on Knowledge Discovery and Data Mining
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§Molecular Relational Learning
• Learn the interaction behavior between a pair of molecules

Recall: Relational Learning

• Examples
• Predicting optical properties when a chromophore (Solute) and solvent (Solvent) react

• Predicting solubility when a solute and solvent react
• Predicting side effects when taking two types of drugs simultaneously (Polypharmacy effect)
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Shift-Robust Molecular Relational Learning with Causal Substructure

Structure Causal Model (SCM) for 
Molecular Relational Learning

𝓒𝟏𝓖𝟏 𝓖𝟐

Causal substructure 𝓒𝟏 of molecule 𝓖𝟏
à Determined by not only 𝓖𝟏but also 𝓖𝟐

Key causal-effect relationship 
in molecular relational learning

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023

Solvent (𝓖𝟐)
Causal substructure  (𝑪𝟏) 

of Solute (𝑮𝟏)Why not 𝑮𝟐 and 𝑪𝟐?
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Methodology Causality in molecular relational learning

• 4 Backdoor paths that confound the model

1. 𝓒𝟏 ← 𝓖𝟏 → 𝓢𝟏 ← 𝓖𝟐 → 𝓡𝟐 → 𝒀
2. 𝓒𝟏 ← 𝓖𝟐 → 𝓡𝟐 → 𝒀
3. 𝓒𝟏 ← 𝓖𝟐 → 𝓢𝟏 → 𝓡𝟏 → 𝒀
4. 𝓒𝟏 ← 𝓖𝟏 → 𝓢𝟏 → 𝓡𝟏 → 𝒀

Causality we are interested in (𝓒𝟏 → 𝒀)

• In molecular relational learning, 
→ 𝓖𝟐 is given and utilized during model prediction, 
all paths are blocked except for
𝓒𝟏 ← 𝓖𝟏 → 𝓢𝟏 → 𝓡𝟏 → 𝒀 Only remaining backdoor path!Structure Causal Model (SCM) for 

Molecular Relational Learning

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Methodology Backdoor adjustment

Backdoor Adjustment

Alleviate confounding effect via Backdoor adjustment!

Structure Causal Model (SCM) for 
Molecular Relational Learning

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023

Confounder Set
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Methodology Causal molecular relational learner
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Disentangling with Atom Representation Masks

• Separate the causal substructure 𝓒𝟏 and shortcut substructure 𝓢𝟏 from 𝓖𝟏
à Not trivial to explicitly manipulate molecular structure
à Let’s separate in representation space by masking atom representation!

Importance of atom 𝑖

Causal substructure

Shortcut substructure

where

• Gumbel sigmoid approach for differentiable optimization of 𝑝)

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023



194

Methodology Causal molecular relational learner
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Disentangling with Atom Representation Masks
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• Shortcut substructure 𝓢𝟏
à Learn non informative distribution

• Causal substructure 𝓒𝟏
à Cross entropy loss for classification
à RMSE loss for Regression

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Methodology Causal molecular relational learner
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Conditional Causal Intervention via backdoor adjustment

• Straightforward approach à Generate an intervened molecule structure

Challenges
1) Molecules exist on the basis of various domain knowledge in molecular science
2) Intervention space on 𝓒𝟏 should be conditioned on the paired molecule 𝓖𝟐

Our Solution
• Obtain shortcut substructure �𝑺𝟏 by modeling interaction with other molecules �𝓖𝟏 and 

molecule 𝓖𝟐

Backdoor Adjustment

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Methodology Causal molecular relational learner
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Final Objective

• ℒk%Q : loss with paired graph (𝓖𝟏, 𝓖𝟐) and target 𝒀
• ℒl_%k_= : loss with causal substructure
• ℒKL : loss with shortcut substructure
• 𝜆1, 𝜆0: weight hyperparameters for ℒKL and ℒ)PO

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Theoretical analysis

Expand by multiplying and dividing 𝑞

Training objective of CMRL

1. Likelihood ratio between true distribution and predicted distribution 
2. Conditional Mutual Information
3. Irreducible constant inherent in the datasets

We can explain the behavior of CMRL in two perspective

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Theoretical analysis

Perspective 1. CMRL learns informative causal substructure

Disentangle the shortcut substructure 𝑺𝟏 that is no longer needed in predicting the label 𝒀 when the context 𝓒𝟏 and 𝓖𝟐 given.

• Minimize

• Chain rule of MI

Encourages the causal substructure 𝓒𝟏 and paired molecule 𝓖𝟐 to contain enough information on target 𝒀.

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Theoretical analysis

Perspective 2. CMRL reduces model bias with causal view

Model bias

• Based on information leakage, 
à Model bias can be quantified based on mutual information

• Again, several backdoor paths are blocked by conditioning on 𝓒𝟏 and 𝓖𝟐
à Enable the direct measure of model bias!
à Finally, Loss term minimize the model bias

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Dataset description

Molecular Interaction Dataset
à Predicting Chromophores’ Absorption max, Emission max, Lifetime
à Predicting Solvation Free Energy of molecules (MNSol, FreeSolv, 

CompSol, Abraham, CombiSolv)
à Regression Task

Drug-Drug Interaction Dataset
à Zhang DDI, ChChMiner, DeepDDI
à Classification Task

Graph Similarity Learning Dataset
à How similar are the paired graphs? (ex. GED)
à AIDS, LINUX, IMDB, OpenSSL, Ffmpeg
à Regression Task / Classification Task

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023



201

Experiments Overall Performance

Observations

1. CMRL outperforms all other baseline methods
à It is crucial to discover causally related substructure in 
molecules

2. Wide applicability of CMRL beyond molecules
à Performs well in dataset that contains core substructure

Performance on molecular interaction prediction task

Performance on graph similarity learning task

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Out-of-distribution performance

In out-of-distribution experiment, we assess the model’s performance on molecules belonging to new scaffold classes

Molecule: 6-nitro-1H-indene

(a) Causal Substructure (NO2)

(b) Scaffold (Indene)

(c) TSNE embeddings (a) Random Split (b) Scaffold Split

TSNE on splitted data (Train / Test)Different scaffolds exhibit totally different distribution

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Out-of-distribution performance

In out-of-distribution experiment, we assess the model’s performance on molecules belonging to new scaffold classes

Performance on drug-drug interaction task

Observation

CMRL outperforms previous work on out-of-distribution scenarios
à Learning causal substructure enhances the generalization ability of the model

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Synthetic dataset experiments

In synthetic dataset experiment, we assess the model’s performance on various levels of bias in datasets

Positive pair
• a pair that shares the same causal substructure
• e.g., {House, House} à Positive

Negative pair
• a pair that each graph has a different causal substructure
• e.g., {House, Cycle} à Negative

Dataset bias
• the ratio of the positive pairs containing “BA” shortcut substructures

• Bias level 𝑏 increases 
à “BA” substructures dominates model prediction

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023

(Barabasi-Albert)
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Experiments Synthetic dataset experiments

In synthetic dataset experiment, we assess the model’s performance on various levels of bias in datasets

Observations

1. Models’ performance degrades as the bias gets severe
à “BA” shortcut confound the model

2. Performance gap between CMRL and CIGIN gets larger as the bias 
gets severe
à Importance of learning causality between the substructure and target
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Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Model analysis

Observations in Ablation Studies

Naïve intervention whose confounders are not conditioned on paired 
molecule 𝓖𝟐
à Performs worse than the model without intervention
à Wideness of intervention space introduces noisy signal during model 

trainingCMRL
w/o !!"

w/o ! #$% w/o 

condition

RM
SE

RM
SE

!! = #. ##% for Absorption
!! = #. #% for Emission

!" = #. #% for Absorption
!" = #. #% for Emission

Observations in Sensitivity Analysis

1. Optimal point for 𝝀𝟐 exist balancing the noisiness and robustness
2. No certain relationship between model performance and 𝝀𝟏

Training objective 

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023
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Experiments Qualitative analysis

Observations

1. Discovered causal substructure aligns to well-known chemical domain knowledge
- CMRL selects edge substructure à Chemical reactions usually happen around ionized atoms
- CMRL concentrates on single-bonded substructure à Single-bonded substructures are more likely to undergo chemical 
reactions
2. When reacting with polar solvents, CMRL focuses on the edge substructures of high polarity
3. Selected important substructures of chromophore varies as the solvent varies

(c) Reaction with polar solvents

(d) Chromophore: EDAC

Oxygen-Carbon
(High Polarity)

Nitrogen-Carbon
(Low Polarity)Nitrogen-CarbonOxygen-Carbon

(a) Reaction with ordinary solvent

(b) Reaction with single bond

Chromophore Polarity Chromophore Polarity

Solvent : acetonitrile Solvent : ethanol

Shift-Robust Molecular Relational Learning with Causal Substructure. KDD 2023

Solvents: 1-propanol, 1-butanol
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§ Material property prediction
• Neural message passing for quantum chemistry. ICML 2017
• Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. NeurIPS 2017
• Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 

2018
• Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019
• Graph convolutional neural networks with global attention for improved materials property prediction. Physical Chemistry 

Chemical Physics 2020
• Direct prediction of phonon density of states with Euclidean neural networks. Advanced Science 2021
• Predicting Density of States via Multi-modal Transformer. ICLR Workshop 2023

§ Extrapolation
• How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. ICLR 2021
• Nonlinearity Encoding for Extrapolation of Neural Networks. KDD 2022

Papers: Material property prediction
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§ General
• Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 2018
• Chemically interpretable graph interaction network for prediction of pharmacokinetic properties of drug-like molecules. AAAI 2020
• SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction. Briefings in Bioinformatics 2021
• Multi-view graph contrastive representation learning for drug-drug interaction prediction. WWW 2021

§ Information bottleneck-based
• Graph information bottleneck for subgraph recognition. ICLR 2021
• Interpretable and generalizable graph learning via stochastic attention mechanism. ICML 2022
• Improving subgraph recognition with variational graph information bottleneck. CVPR 2022
• Conditional Graph Information Bottleneck for Molecular Relational Learning. ICML 2023

§ Causal inference-based
• Discovering invariant rationales for graph neural networks. ICLR 2022
• Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure.  NeurIPS 2022
• Causal attention for interpretable and generalizable graph classification. KDD 2022
• Shift-robust molecular relational learning with causal substructure. KDD 2023

Papers: Relational Learning



Thanks for listening!


