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= Research Interest
« Data-Centric Al, Model-Centric Al, Multimodal Data Mining, Al for Science

« Mining meaningful knowledge from multimodal data to develop artificial
intelligence solutions for various real-world applications across different
disciplines

« Multi-modal Learning, Graph neural network

 Application domains: Recommendation system, Social network analysis, Fraud
detection, Sentiment analysis, Purchase/Click prediction, Anomaly detection,

Knowledge-graph construction, Time-series analysis, Bioinformatics, Chemistry
etc.
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= Professional Experience
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Dept. of Computer Science (2019. 1 —2020. 10)
« Research Intern, Microsoft Research Asia (2017.9—-2017. 12)

Contact Information - Research Intern, NAVER (2017. 3 — 2017. 6)
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Outline

= Qverview
= Random walk-based Methods
= Graph Neural Networks (GNNs)

» How to effectively train GNNs?
- Self-supervised Learning (AAAI'22)
- Explainable Model (NeurlPS'23)
- Robustness (KDD'23)

» Applications of GNNs
- GNNs for Science (2fat/AXH/A=) (ICML'23)
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Outline

= Qverview



Graph (network)

= A general description of data and their relations

= A collection of objects (i.e., nodes), along with a set of interactions (i.e., edges) between pairs of
these objects.




Various real-world graphs (networks)
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Types of graph

= Undirected / Directed
= Homogeneous network

= Heterogeneous network
« Multiplex network
- Bipartite graph



Formal definition of graphs

= Agraph G = (V,E) is defined by a set of nodes V and a set of edges E between these nodes

= An edge going from node i € IV tonode j € VV is denoted as (i,j) € E

= A convenient way to represent graphs is through an adjacency matrix A € RIVIXIVI

» A;j = 1if(i,j) € E, and A;; = 0 otherwise
- Some graphs have weighted edges, i.e., entries of A are arbitrary real-values rather than {0,1}

= Feature information X € RIVIXF




Undirected graph vs. directed graph

= Undirected Graph = Directed Graph
« Adjacency matrix 4 is symmetric « Adjacency matrix 4 is not symmetric
- (uv) €EE < (v,u) €EE - (u,v) EE« (v,u) EE

- Examples « Examples
+ Collaborations  Paper citation

« Friendship on Facebook « Follow on Twitter



Adjacency matrix

A,-j= 1 if thereis a link from node i to node j

A;;=0 otherwise

(0 1 0 1)

A, =A, 1 0 0 1

Undirected Graph A =0 A= 0 0 0 1
11 1 0
(0 0 0 1)

L 1 O O O

Directed Graph Aij # A ji 10 0 0 O
Ay =0 0 1 1 0
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Homogeneous network

= A graph with a single type of node and a single type of edge

Num. node types = 1

Num. edge types = 1
u ge typ Word cooccurrence graph
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Protein-Protein Interaction Graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word co-occurrence network (range 3 words) - ENG.jpg
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https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

Heterogeneous network (HetNet)

= |[n reality a lot of graphs have multiple types of nodes and multiple types of edges

= Such networks are called “heterogeneous network”

y Movie
Studio 7"
Num. node types > 1

Num. edge types > 1

; Director
Venue Paper Author Actor Movie

DBLP Bibliographic Network The IMDb Movie Network
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Multiplex (Multi-layer) network %%( | @ %2[

= A type of heterogeneous network
« A single node type, multiple edge types Node: User

= Example 1: Social network
« Relationship between users Num. node types = 1

G
Num. edge types > 1 >

= Example 2: E-commerce Family
 Relationship between items Gy

= Example 3: Publication network . @ Schoolmate
- Relationship between papers (Citation, share authors) :
- Relationship between authors (Co-author, co-citation) G

= Example 4: Movie database Colleague

« Relationship between movies
« Common director, common actor

= Example 5: Transportation network in a city Social Network

- Relation between locations in a city
13
e Bus, train, car, taxi



Other examples of multiplex network

Frequencies based composition

So<f<fi
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Ji<f<fs

Ss<f<fs

Similarity matrices Functional layers

Frequency based composition of brain

\ 4
overlapping link

Disease-Disease network

Multiplex biological networks

De Domenico, Manlio. "Multilayer modeling and analysis of human brain networks." Giga Science 6.5 (2017): gix004. 1 4

Halu, Arda, et al. "The multiplex network of human diseases." NPJ systems biology and applications 5.1 (2019): 1-12.
Didier, Gilles, Christine Brun, and Anais Baudot. "ldentifying communities from multiplex biological networks." Peerd 3 (2015): e1525.
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Bipartite graph

= Nodes can be divided into two disjoint sets U and V such that every link connects a node in U to
oneinV
« Uand V are independent sets

= Examples
« Authors-to-Papers (they authored)
« Actors-to-Movies (they appeared in)
« Users-to-Movies (they rated)
« Recipes-to-Ingredients (they contain)

15



Overview:
Data as Graphs

Xu, Jian. "Representing Big Data as Networks: New Methods a
nd Insights." arXiv preprint arXiv:1712.09648 (2017).

Pairwise relationships

Higher-order relationships

Representation

Lossless
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Machine learning on graphs

Classical ML tasks in graphs:

= Node classification
 Predict a type of a given node

= Link prediction
« Predict whether two nodes are linked

= Community detection
- Identify densely linked clusters of nodes

= Network similarity
« How similar are two (sub)networks

Link Prediction
(Friend Recommendation)

17



Machine learning on graphs
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Machine learning in general

= Machine Learning = Representation + Objective + Optimization

Representation
Learning

=

Machine Learning
System

Good Representation is Essential for
Good Machine Learning

Yoshua Bengio, Deep Learning of Representations, AAAI 2013 Tutorial
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Traditional feature extraction for images

= Fixed/Hand-crafted Feature Extractor
_. Hand-crafted feature

.
Y A
.
.
«®

ole"*
Feature
Extractor

Trainable
Classifier

Histogram of Oriented Gradients

Vi

A 74 —vE
*:._\_‘__’.{v__ >
/ - - >y F —

lmage gradients

- Based on Yann Lecun’s slides
- Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of computer vision 60.2 (2004): 91-110.

¥
K |k

Keypoint descriptor



Machine (Deep) learning based Representation learning

= Multiple layers trained end-to-end

Low-Level Mid-Level | | High-Level Trainable
Features Features Features Classifier

Based on Yann Lecun’s slides
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Traditional Graph Representation

ABCDETFGHII
A{01 1100000 Problems
B|1000110200 _

|
cli1oo0100100 Suffer from data sparsity
D1 o 1000110 = Suffer from high dimensionality
E{lo1 0000001
F{010000 000 = High complexity for computation
G{0ooO 1100000 . D ., .y
Hloo o100 00 0 oes not represent “semantics
1(000010 000 .

Adjacency matrix

How to effectively and efficiently represent graphs is the key!
— Deep learning-based approach?

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml 2



Challenges of Graph Representation Learning

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

WUk 22164
W/
P AMXUSEL | 11006 111000
| ( i :
" it
iz 4 i poal
! ARl

- RNNs for text/sequences ...

W o060
= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)

- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019
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Typical tasks

= Node-level prediction
= Edge-level prediction

= Graph-level prediction

Graph-level

24



Typical tasks

= Node-level tasks (or edge-level tasks)

Node label classification, including node-level anomaly detection
Node label regression

Link label binary classification, i.e., link prediction

Link label multi-class classification, i.e., relation classification

)

> Social network analysis (e.g., demographic info prediction)
> Spam / fraud detection (e.g., transaction networks)

> Link prediction (e.g., social networks, chemical interaction
networks, biological networks, transportation networks)

> Knowledge graph population / completion / relation reasoning
» Recommender system (bipartite graphs, hyper-graphs)
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Typical tasks

= Graph-level tasks
« Graph label classification

« Graph label regression

$

» Molecular property prediction
» Drug discovery
» Scene understanding (i.e., objects graph)

R

CC(=0)0C1=CC=CC=C1C(=0)0 =y

Input: SMILES of a molecule

Classification
GNN @ or regression

Molecular vector

» O

Molecular property
(label or real value)
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Outline

= Random walk-based Methods

27



GRAPH REPRESENTATION LEARNING

= Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original net
work

= Similar nodes in a network have similar vector representations

Node Vector Tasks
fiu—> R4 iy . ’ > | » Node c!assmcatlon
R « Clustering
O Feature representation, - Link prediction
embedding .
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NODE EMBEDDING

= Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

" ENC(u)

= Two things to consider
« 1. How to encode nodes?

encode nodes

« Encoder

« 2. How to define similarity in
the embedding space?

« Decoder (Similarity function)

Original graph Embedding space
(Latent space)
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ENCODER

= Maps each node to a low-dimensional vector

d-dimensional embedding vector

ENC(v) =z, <
/

Node in the input graph

= Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)
Z € RV
ENC(U)=ZU=Z'U ex) node 4

v e WVl /

embedding vector for a

\

0
embedding specific node 0
mat\rix / A 0 Each node is assigned a unique
_ Dimension/size v = 1 embedding vector (i.e., we directly
7 = ~ of embeddings 0 optimize the embedding of each node)

| ] o
) 0
0

e
one column per node | V|



DECODER (SIMILARITY FUNCTION)

= Specifies how the relationships in the original graph map to relationships in embedding space

Relationships in the original graph
similarity (u,v)

Similarity between
node u and node v in
the original network

2

Relationships in embedding space

ZyZy,

Dot product between
embeddings of node u
and node v

31



ENCODER + DECODER FRAMEWORK

= Encoder: Embedding look-up (Shallow model)
- Deep encoders (GNNs) later in the lecture

= Decoder: Based on dot product

Original graph

Objective

Maximize z! z,, for node pairs (u, v) that are similar

= How can we define node similarity?

= Possible choice
« Are two nodes linked?
« Do they share neighbors?
« Do they have similar structural roles?

Embedding space
(Latent space)

32



RECALL: HOMOGENEOUS NETWORK

= A graph with a single type of node and a single type of edge

Num. node types = 1
Num. edge types = 1

ENV_HV1H2

GAG_HV1H2

Homogeneous network

Social graph

Protein-Protein Interaction Graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word co-occurrence network (range 3 words) - ENG.jpg
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https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

WHAT IS RANDOM WALK?

= Given a graph and a starting node, 10
« 1. Select a neighbor of it at random,
« 2. Move to this neighbor
« Repeat 1,2

= Example of random walk
- Start>52>28>9>8~>11

« (Random) Sequence of nodes




RANDOM WALK-BASED NODE EMBEDDINGS: OVERVIEW

= |dea: Learn node embedding such that nearby nodes in the graph are close together in the embedding space

= Q. Given a node u, how do we define nearby nodes?

= A. Through random walk!

= Step 1. Estimate the probability of visiting node v = Step 2. Optimize embeddings to encode these
on a random walk starting from node u using some random walk statistics
random walk strategy R . e.g., If two nodes co-occur, maximize their similarity

PR(fU|u) cf) Dot product = cosine similarity, if
node embeddings are unit vectors

Why random walk?
Random walk can reflect both local and high-order neighborhood information -



RANDOM WALK-BASED NODE EMBEDDINGS: DETAILED ALGORITHM

= Given: G = (V,E)
= Goal: To learn a mapping function f:u — R% foru € V
- f(u) =z, € R

= Step 1: Run fixed-length random walks starting from each node u in the graph using some random walk str
ategy R

= Step 2: For each node u collect N;(u), the multiset of nodes visited on random walks starting from u
« Ngp(u): Neighboring nodes of node u under random walk strategy R

= Step 3: Optimize embeddings according to the following objective
- Objective: Given node u, predict its neighbors N (1)

m}gx Z log P(Ng(u)|zy,) (Maximum likelihood objective)

uev

Given node u, we aim to maximize the probability of its neighboring nodes

i.e., we want to learn embedding of node u that is predictive of its neighboring nodes




HOW TO DEFINE NEIGHBORING NODES?

Random walk strategy

Example sequence

Window size=2

a—->b->c-ovi>d-oe—>f

ai»b—>c—>vi—>d—>ei—>f

Center node

Neighborhood

(%]

Ngr(v;) = b,c,d,e

37



RANDOM WALK-BASED NODE EMBEDDINGS: OPTIMIZATION

Equivalent

mjnglogP(NR(u)lzu) ‘ L=Z z —log(P(v|zy))

uev U€EV veNRg(u)

= Intuition: Optimize embeddings z,, to maximize the likelihood of random walk co-occurrences

= Approach: Parameterize P(v|z,) using softmax

exp(z;,Z,)
P(v|z,) =
“ ZjEV exp(zﬂzj)
T
exp(zyZy) —— ,
L= 2 z —log(z S— )) Optimizing random walk embeddings
UEV VENR (1) jev SXPlZuz; = Finding embeddings z,, that
Sum over Sum over nodes v seen Predicted probability of minimizes the loss L
all nodes u on random walks u and v cooccurring on
starting from u random walk



NEGATIVE SAMPLING

- 0(|]V|?) complexity

e e ) . - We can approximate this normalization term
= But, optimizing the loss L is expensive!

_ exp(zyzy)
29N) Tl @iz

UEV VENR (U)

exp(zﬂzv) k
lo ~ log(a(zlz,)) — 2 log(a(zz:)), j~P
g(ZjEVeXp(ZEZj)) g( ucv ) =1 g( ( u ])) ] %

1 https://arxiv.org/pdf/1402.3722.pdf
(Sigmoid function)

) O'(X) = 1+e™*
« Makes each term a “probability” between 0 and 1

« P,: Random distribution over nodes

= Instead of normalizing w.r.t. all nodes, just normalize against k random “negative samples” j

= How do we sample from Py, to help the training process?
- Sample k negative nodes considering the degree of each node

39



RANDOM WALK-BASED NODE EMBEDDINGS: OPTIMIZATION

= After we obtained the objective function, how do we optimize (minimize) it?

L=) ) —log(P(vz)

Uu€eV veNg(u)

= Gradient descent: A simple and the most common way to minimize L
« Step 1: Randomly initialize z; foralli € V

- Step 2: Iterate until convergence
oL

« Foralli € V, compute the derivative w.r.t. the loss L, i.e., Fy
l

* Foralli €V, update z; < z; — 15—
l

= Stochastic Gradient descent: Instead of evaluating gradients over all examples, evaluate for a single node
« Step 1: Randomly initialize z; foralli € V

+ Step 2: Iterate until convergence: L™ = 3 .,y —log(P(v|z,))

aL®
! aZj

« Sample a node i, for all j € Ny (i) compute the derivative w.r.t. the loss L, i.e.

aL®
-1
62j

- Forall j € Ng(i), update z; « z;




NODE2VEC: BIASED WALKS

= |dea: Use flexible, biased random walks that can trade off between local and global views of the network
« Deepwalk’s simple random walk mainly focuses on the global view

—>BFS (Breadth First Search)
—>»[DFS  (Depth First Search)

= Two strategies to define a neighborhood Ny (u) of node u: BFS and DFS

= Example: Walk of length 3 from node u
« Ngps(u) = {s4,5,,53} Local microscopic view
« Npps(u) = {s4,S5,5S¢} Global macroscopic view

BFS DFS

How can we interpolate between BFS and DFS?

41



NODE2VEC: INTERPOLATING BFS AND DFS

Same distance to s
= Biased fixed-length random walk R starting fro !

m node u generates neighborhood Ny (1)

Farther from s4

= Two parameters to control the interpolation
* Return parameter p

+ Return back to the previous node Back to 54 Pt 1/6] Farther from s,
 In-out parameter q ‘ﬁs
« Moving outwards (DFS) vs. inwards (BFS) u

« Intuitively, q is the “ratio” of BFS vs. DFS

Current situation
-  Random walk that started from node u just traversed
edge (s{,w) and is now at w
- At this point, neighbors of w can be 54, s,, 53 or s,

Idea of biased random walk
Remember where the walk came from!

42



OUTLINE

= Graph Neural Networks (GNNSs)

43



RECALL: MACHINE LEARNING ON GRAPHS
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RECAP: NODE EMBEDDING

= Main idea: Encode nodes so that similarity in the embedding space approximates similarity in the graph

" ENC(u)

= Two things to consider
« 1. How to encode nodes?

encode nodes

« Encoder

« 2. How to define similarity in
the embedding space?

« Decoder (Similarity function)

Original graph Embedding space
(Latent space)
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RECAP: DEEPWALK/NODE2VEC

Lpw(6) = ) log p(ol6) = > log p((N(vi),v:)I6)

0€0 0€0
= > D, log p(vjlor),
OGO’UjGN(Ui)

« O: The set of all observations obtained from random walks
c0=WNW;),v) €0

« Center node v;

+ Neighboring nodes N (v;)

= Biased random walk

Liu, Ninghao, et al. "Is a single vector enough? exploring node polysemy for network embedding." KDD 2019

Exampleseq { a—>b—oc-ov;>d-o>e—>f
Window size=2 ai»b—>c—>vi—>d—>ei—>f
Center node V;

Neighborhood

Observation o

N(v;) =b,c,d,e
o= (Nw;),v;)=({b,c,d, e},v;)

46



RECALL: ENCODER

= Maps each node to a low-dimensional vector

d-dimensional embedding vector

ENC(v) =z, <
/

Node in the input graph

= Simplest encoding approach: Encoder is just an embedding-lookup (Shallow model)

ax|v|
ENC(U)=ZU=Z'U ZER ex) node 4

v e WVl /

Each node is assigned a unique

embedding vector for a . ] .
- embedding vector (i.e., we directly

From now on: Deep encoder

\

embedding specific node 0
mat\rix / A O optimize the embedding of each node)

. Dimension/size v = 1

Z= <  of embeddings =%

a 0

o

,\\’/, '
one column per node | V| a7



DEEP GRAPH ENCODER

= Deep Encoder = Graph neural network (GNN)

Shallow model

ENC(v) = z,

¥

Deep model

ENC(v) =

Multiple layers of non-linear
transformations-based
on graph structure

Graph
convolution

Hidden layer

Graph
convolution

Hidden layer

Node embedding
Graph embedding
Subgraph embedding
Edge embedding

Can we use existing deep learning models? e.g., CNN, RNN, etc



RECAP: CHALLENGES OF GRAPH REPRESENTATION LEARNING

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

Bt Wi
V4
, P uais [ 1o
7
o e
iz 4 i poal
\ onet

- RNNs for text/sequences ...

®
R

®
o0 00 A A
AR 1 1 T
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©
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= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)
- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019 49



BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGES

= Convolutional filters
« Local feature detectors

- A feature is learned in each local receptive field by a convolutional filter

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 /—M
(SI)'(dS) k:‘r:el Max-Pooling (5 I)'(dS) ks;r.mel Max-Pooling (with
valid padding (2x2) valid padding (2x2) — /& \dropout)
/ ) / \ / J / J 5 :///:;7.7(/7’;5, 0
1
2

INPUT nl channels nl channels n2 channels n2 channels |

(28 x 28 x 1) (24 x 24 x nl) (12 x12 x nl) (8x8xn2) (4 x4 xn2)

@9

n3 units

(Figure credit) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CNN on an image

O—0—0—®

OUTPUT
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FROM IMAGES TO GRAPHS: LOCAL RECEPTIVE FIELD ON GRAPHS

= How should we define local receptive fields on graphs?
« Local subgraphs

Graph

Graphs look like this

= There is no fixed notion of locality
or sliding window on the graph

= No order among neighboring nodes
« Permutation invariant

= |dea: Transform information from the neighboring nodes and combine it

- Step 1: For each node v;, transform “messages” from neighbors N (i)

« Wjh; for v; € N(i), hj: “Message” from v;
- Step 2: Add them up: ZvjEN(i) W;h,;

(Figure credit) https://deepgraphlearning.github.io/coursewebsite/schedule
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GRAPH CONVOLUTIONAL NETWORK (GCN)

= |dea: Node’s neighborhood defines a computation graph
- Messages contain relational information + attribute information

Determine node Propagate messages and
computation graph transform information

Learn how to propagate information across the graph to compute node features

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GCN: NEIGHBORHOOD AGGREGATION

= Generate node embeddings based on local network neighborhoods

= Neighborhood aggregation
« Nodes aggregate information from their neighbors using neural networks

- Every node defines a computation graph based on its neighborhood

Neighborhood
TARGET NODE Aggregation

0“
*
*
*
*
l "
*
*
*
*
‘0
*
“‘
*
“

.4-

Input graph
put grap Neural networks

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

N ® N o
2% 4%
< i " s /1 e
O Ry ene? P .. " ..
CYYY B o [ 1

= Things to consider

« 1. What kind of neural
network?

neighboring nodes?

« 2. How do we aggregate
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GCN: BASIC APPROACH

= 1. What kind of neural network?

« Simple multiplication of weight matrices|(B and{W

= 2. What kind of aggregation?
| Average

Weight matrix

PN

-

|
h,(,lH) 5 z

Initial embedding of v u€eN (v)

K}
IN()

/
hY = va\

Z, = h,(,L)

Final embedding of v

Feature of node v

N

Average of neighboring nodes’
previous layer embeddings

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

e
el il

Embedding of v atlayer I  Total number of layers

—~

_1}

How do we train the
embeddings?




GCN: MATRIX FORMULATION

= GCN can be efficiently computed in a matrix form

(1+1) A
hv =0 Wl Z L
ey IN(v)]
D 1AH®

HD = g(AHOWT

d

Neighborhood aggregation

S =x,, z,=h
+ B,hY

)

vie{01,..,L—1}

(Matrix form)

where 4 = D~14

Since 4 is sparse, sparse matrix multiplication
can be used (efficient)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017

.%:& .% &.
o °
fmw N
¢ Jii e %ee o0°
H&-1D
(k-1)
<] h;
Z hy = A,HO
UEN (v)
D~* D,, =Deg(v) = |[N(v)|
_ 1
/D 1 D—l —
— 7 TV TINW)
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GCN: TRAINING

= We need to define the loss function on the embeddings
= We can feed the final embeddings z,, into any loss function and run SGD to train the weight parameters

= Types of loss function: 1) Supervised loss, 2) Unsupervised loss

= 1) Supervised loss

min > L0, f3(2,))

vev
 y,,: Label of node v

* fg: Classifier with parameter 6
« L could be squared error if y is real number (regression), or cross entropy if y is categorical (classification)

= 2) Unsupervised loss

 No node label available mgn Z L(Ay . fo(2y,2y)) fo: Encoder

« We can use the graph structure as the supervision e
 e.g., adjacency information '
* In this case, L is cross entropy (4, = 1 if an edge exists between node v and node u, otherwise 0)

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GCN: SUPERVISED TRAINING

= Directly train the model for a supervised task (e.g., node classification)

Adjacency matrix

A
Z
R > ) i 9-f@)
X Y - .

'?. Node embedding Prediction

? matrix

E

Attribute matrix Partial label

L== ylogfo(z,) + (1= y,)log(1 - fo(z,))

Ground truth label Model prediction

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GCN: UNSUPERVISED TRAINING

= As we are not given node labels, we define our task to reconstruct the graph, i.e., Adjacency matrix

Adjacency matrix

A
L] (= 7
=) - .
X B
T Node embedding
matrix

Attribute matrix

L=- z Ay logfo(zy,2y) + (1 - AV,U) log(1 — fo(zy, 2u))

v, uev

Ground truth label Model prediction

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR 2017
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GRAPH ATTENTION NETWORKS (GAT)

= |dea: Treat different neighboring nodes differently

h1(71+1) _ O'(Wl z Ay g)) h,(,”l):a w,

UeN (v)uv ]‘

UEN(v)

0

IN(v)|

+ B;AY

(GCN)

Attention weight

* y,y,: Importance of node u to node v as its neighboring node

= In GCN, the importance was heuristically defined based on the structural property of the graph (node

degree)

© Uy = le)l: Does not depend on the neighbors (it is fixed)

= All neighboring nodes u € N(v) are equally important to node v

Not all neighbors are equally important!

Velickovi¢, Petar, et al. "Graph attention networks." ICLR 2018
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GRAPH ATTENTION NETWORKS (GAT)

= |dea: Treat different neighboring nodes differently

(I+1) _ jh(l)
hv =0 Wl Tyulty * y,,: Importance of node u to node v as its neighboring node

UeN (v)uUv ]‘
Attention weight PR I hg—l)
€4AB

= Computing the attention weight R

(l—l)ﬂ- p

_ (D (D (Importance of node u’s hA
Cyu = a(Wlhv ) Wlhu ) message to node v) /
exp(eyy)

Apu (Normalization)

B ZkEN(v) exp(eyk) -
eap = a(W;_4 :Wl—1hg 1))

How do we define a(-)?

Velickovi¢, Petar, et al. "Graph attention networks." ICLR 2018



GRAPH ATTENTION NETWORKS (GAT)

__ exp(ew)
Qiken(v) €XP(evk)

avu
= Defining the function a(-)

ey =E{Wlh1(yl)' Wlhg)) (Importance of node u’s message to node v)

. l l
=|Linear(Concat (Wlh,(, ), Wlhg)))
Parameters of Linear layer is jointly trained

end-to-end with other parameters of GAT

= Multi-head attention (refer to Lecture 5 - Transformer)
« Create multiple attention scores using multiple copies of parameters

h,(,l)[l] =0 (Wl 05[1]h(l)> l l l l
wehGor B = AGG(Y[1], h{" 2], ki [3])
) _ [2] 4, (D)
h,’[2] =0 <Wz 2 a, hy, ) » The final embedding aggregates the outputs
ueN (v)uv of multi-head attention

hf,”[3]=a<wl > aLi’Jh?)
61
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GRAPHSAGE

= Generalization of GCN/GAT
 So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

Average of neighboring nodes

Add self representation

N

hd

hg+1) =0 Wl z

K}
IN()

UEN (v)

+

GCN

B, hg)

Attention weight

W =o(we D )

UeN(v)uv

GAT

Generalized representation

GraphSAGE h(l+1) — g ([Wl .
%

N\

Generalized representation

[ L)) )

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurlPS 2017
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GRAPHSAGE

= Generalization of GCN/GAT
 So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

Generalized representation
\ (Concatenation here)

100 = o (w, G0 v}l

Generalized representation

= Variants of AGG
« Mean: Same as GCN

3%
UEN(v) INW)|

« Pool: Transform neighbor vectors and apply symmetric vector function
- AGG=y ({MLP(hI(PNu € N(v)}), where y is element-wise mean/max/min
« LSTM: Apply LSTM to shuffled neighbors
+ AGG = LSTM (|h{|u € z(N (v)) )

- AGG =)

Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurlPS 2017 63



A GNN LAYER: OVERVIEW

= GNN layer = 1) Message + 2) Aggregation
= Compress a set of vectors into a single vector

= Different types of GNN layers
« GCN, GraphSAGE, GAT, ...

Q)

h
(+1) _ u )
(GCN)  h, —a(Wl E |N(v)|+Blh”>

UEN (v)
l
Ay hg ))

Gar) AV =g (Wl

UeEN (v)uv

(GraphSAGE) hg“) =0 (lWl - AGG ({h8)|u € N(v)}) ;Blhl(Jl)])

TARGET NODE Node v

2 (2) Aggregation
/ & o ¢ (1) Message

INPUT GRAPH . .

= (1) Message computation

- Message function: mfp = MSGW® (hg))

- Example: A linear layer mg) = Wlhg)

= (2) Aggregation

+ hY = AGG ({mP|u e N)})
« Example: SUM(), MEAN(), or MAX() aggregator
. hl(,l) = SUM ({mg)lu € N(U)}) = ZuEN(v) Wlhl(tl)

_ )
- ZuEN(v) m,
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INDUCTIVE CAPABILITY OF GNN

= Inductive learning: We can obtain embeddings for nodes that have not appeared in the training time

- e.g., In Amazon, new users are consistently added to the system, and it is impractical to re-train the system to get t
he embeddings for the new users

Zy
| e | o
PYAN NI Y

AN
| <\
— — —
l - | e | rd
Generate embedding
Train with snapshot New node arrives for new node

= This is possible because we do not train an embedding matrix as done in Deepwalk/node2vec

. ®
= |nstead, we train aggregator and transformer - — fro,
‘0 o M B " %
‘ i ‘ shared parameters ‘
coe ® %o o0°°

Compute graph for node A Compute graph for node B



OUTLINE

How to effectively train GNNs?

- Self-supervised Learning (AAAI'22)
- Explainable Model (NeurlPS'23)

- Robustness (KDD'23)
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OUTLINE

= How to effectively train GNNs?
- Self-supervised Learning (AAAI'22)

67



What is self-supervised learning?

= A form of unsupervised learning where the data provides the supervision
= |[n general, withhold some part of the data, and task the network with predicting it

= An example of pretext task: Relative positioning
« Train network to predict relative position of two regions in the same image

(Figure credit) Unsupervised visual representation learning by context prediction, ICCV2015



What is self-supervised learning?

= Pretext task : Rotation
« Which one has the correct rotation?

(Figure credit) Self-Supervised Learning, Andrew Zisserman

= Pretext task: Jigsaw puzzle

(b
Shuffled
= Pretext task : Colorlzatlon




The Contrastive Learning Paradigm

Maximize agreement
Z; < > Zj

g(~>] foc)

Projection Head

h; <— Representation —» h;

fC)

Encoder

(f) Rotate o°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
= Algorithm / log exp(sim(zi, 25)/7)
. i,j — — 10 5N .
« 1) Sample mini batch of N examples et Liesq exp(sim(z;, 21)/7)

« 2) Create 2N data points via Data Augmentation
- 3) Given a positive pair, treat other 2(N — 1) points as negative examples

« = Instance Discrimination!

Reduce: Dist. between representations of different augmented views of the same image (Positive)
Increase: Dist. between representations of augmented views from different images (Negative)



Deep Graph Contrastive Representation Learning (GRACE)

= Pull the representation of the same node in the two augmented graphs

= Push apart representations of every other node

eS

s

Original features

Corrupted features
g Re ) Positive pairs
Wk ,, Ve ed, <----= Negative pairs (intra-view)
Ode £ 8es . . .
eaq,res <---> Negative pairs (inter-view)

eO(ui,vi)/T

Y

N N
\eO(ui,vi)/t + S: ]]-[k;éi]ee(ui"vk)/q- 4+ Z ]l[k#i]ee(ui,uk)/T
siti k=1

the positive pair lle B J

Vv Vv
inter-view negative pairs intra-view negative pairs
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Shortcomings of Contrastive Methods

= 1) Requires negative samples = Sampling bias
Treat different image as negative even if they share the semantics

= 2) Requires careful augmentation

bace bbbp
Crop , S Y, S
00, g, &, 00, 73 &, N
L e 9 3 9 4
50 O,% Qr%/) Lo O,o Qr%/) P s, s4.

Cutout
c NodeDrop - -17.56%  -17.70% | -15.35% [OREIR -2.94% | -5.89% | -1.07% | -3.26%
S §
= Color L
©
g Subgraph - -21.65% -22.82% -24.99% -21.17%  Subgraph - SEVVIZ -11.53% | -13.08%
¥ Sobel y lSU
a -
o )
*—’ ; EdgePert - -15.58%  -22.07% |~ 5 -16.03%  EdgePert - ST BRI -31.03% s
+ Noise
%]
I_| -

Blur FeatMask-. -26.39% -1515!6 FeatMask- SERPUN -31.45% EEHIGA
Rotate

NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking

o® Og@& (/0\0( 60\08\ \\\d\(’e %\0( ?\0@’@ e
2nd transformation
Image classification Graph classification
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Motivation: Is Augmentation Appropriate for Graph-structured Data?

Random Cropping Color Distortion

= However in the case of graphs, we cannot ascertain whether the augmented graph would be positively
related to original graph

= Image’s underlying semantic is hardly changed after augmentation

Drop Node Drop Edge
- OH 0. OH Community 1
o o Jooy | Aty
Y " T4
L | . X \
aspirin alkene A S
Bob W ;’&. \_:
Perturb Edge /
o) OH Aliceg Community 2
(0) » Q Q \
o dh
0 il W
aspirin y - lactone Comimunity 3

Because graphs contain not only the semantic but also the structural information
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Motivation: Is Augmentation Appropriate for Graph-structured Data?

= Performance sensitivity according to hyperparameters for augmentations

NodeDrop - =17.56%  -17.70% |-15.35% | =

e - -

Comp. Photo CS Physics :
Node | BGRL| -4.00% -1.06% -0.20% -0.69% Subgraph - -21.65% -22.82% -24.99% -21.17%  Subgraph - -19.42%
Classi.| GCA | -19.18%  -548%  -0.27% OOM 159
Node | BGRL| -11.57% -13.30%  -0.78% -6.46% EdgePert - -15.58%  -22.07% 1495% 16.03%  Edgepert - -31.03% " )
Clust. | GCA | -26.28% -23.27% -1.64% OOM

FeatMask -| -14.56% -26.39% | -15.15% FeatMask . BERPIA -31.45%

NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking

Node-level task Graph-level task

= The quality of the learned representations relies on the choice of augmentation scheme
« Performance on various downstream tasks varies greatly according to the choice of augmentation hyperparameters

We need more stable and general framework for
generating alternative view of the original graph
without relying on augmentation



Augmentation-Free Graph Representation Learning

= |nstead of creating two arbitrarily augmented views of a graph,

- Use the original graph as-is as one view, and generate another view by discovering nodes that can serve as positive
samples via k-nearest neighbor search in embedding space

= However, naively selected positive samples with k-NN includes false positives
« More than 10% of false negatives

-®- Rand. GCN  =E- Adj. == Rand.GCN + Adj. -+ Features
Computers WikiCS
R S - —
< 80 T-e T--e~_
= FARE T T, S .
% of same label 2 70| e e e ~3
0 o 60
among neighbors 4 eo
= 50
o 50
@]
40 40
30 Avennnn, Arrrrrnn Arvrnnns Arennnns 4 301 Avvnnun. Arrrrnnn Arrennnn Aerrnnes A
4 8 16 32 64 4 8 16 32 64
Num. Neighbors in k-NN Num. Neighbors in k-NN

We need to filter out false positives regarding local and global perspective!



Capturing Local and Global Semantics

Cluster 1

Cluster 3

Cluster 2

 B;: Set of k-NNs of query v;
« N;: Set of adjacent nodes of query v;
« C;: Set of nodes that are in the same cluster with query v;

A Query Node (v;)

O Node (V\v;)

:: .. Nearest Neighbors (B;)
<> Adjacency (N;)

Same cluster as v; (C;)

'::) Local Positive (B; N N;)

l::) Global Positive (B; N C;)

@ Rcal Positive (P;)

= Obtain real positives for v;

= Minimize the cosine distance between query and
real positives P;

ZehﬁT

Log=—= S‘ D

z—l v; €P;
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Overall Architecture of AFGRL

do

k-NN(B;) =

\ Adj.(N;) =
! Local (NinBi)
E Global (B; N C;)
% K-means (C;) —

P;

\

______________________

Tl
Stop-Gradient

>

______________________

\ 4
N
Ly mh
N; 7 11w

i=1j€P;
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Experiments

= Task: Node classification

WikiCS Computers Photo Co.CS Co.Physics
Sup. GCN 7719 +£012 86.51 £054 9242 +022 93.03 £031 95.65 +0.16
Raw feats. 7198 £000 73.81 £000 7853 +000 90.37 £0.00 93.58 +0.00
node2vec 71.79 £ 005 84.39 +£0.08 89.67 +£0.12 85.08 £0.03 91.19 +0.04
DeepWalk | 74.35 +0.06 85.68 £006 89.44 +0.11 84.61 £022 91.77 +0.15
DW +feats. | 77.21 +£0.03 86.28 007 90.05 +£0.08 87.70 £0.04 94.90 + 0.09
DGI 7535 +£014 83.95+047 91.61 £022 92.15+063 94.51 +£0.52
GMI 74.85 £ 008 8221 +£031 90.68 +0.17 OOM OOM
MVGRL 7752 +£008 87.52+0.11 91.74 £007 92.11 £0.12 95.33 +0.03
GRACE 7797 +0.63 86.50+033 92.46 +0.18 92.17 +0.04 OOM
GCA 7794 + 067 87.32 +050 92.39 +033 92.84 +0.15 OOM
BRGRI J6RA 074 K960 037 0307 4038 0250 o014 OSAR L 002
AFGRL 77.62 +049 89.88 +033 93.22 +028 93.27 +0.17 95.69 + 0.10
Recall...
Comp. Photo S Physics
Node | BGRL| -4.00% -1.06% -0.20% -0.69%
Classi.| GCA | -19.18% -5.48% -0.27% OOM
Node | BGRL| -11.57% -13.30% -0.78%  -6.46%
Clust. | GCA | -26.28% -23.27% -1.64% OOM

AFGRL outperforms SOTA baselines

Accuracy (%)
00} O (e}
(e} o =

(oo}
(o]

O
=

Vo]
o

Accuracy (%)

o
[oe]

Computers

[00]
O

4

Num. Nearest Neighbors (k)

8 16

Computers

32

|0—o—0—o—0

1

3

5 7
Num. K-Means Runs (M)

9

94.0

93.51

93.01

92.51

92.0

94.0

93.51

93.0 1

92.51

92.0 =

Co. CS

—eo—o

4 8 16 32
Num. Nearest Neighbors (k)
Co. CS

O—O——0—0—0

1 3 5 7 9
Num. K-Means Runs (M)

AFGRL is stable over hyperparameters

—> Can be easily trained compared with
other augmentation-based methods.
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Outline

= How to effectively train GNNs?

- Explainable Model (NeurlPS'23)
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INTRODUCTION

« Explainable Al
« Reasoning process : 220| s{ie 2H

o
. 20| SHIZ 0 E HRE o5

1. @& O|0|X|2EE] feature ==
v

b classO]| CHet prototypelt SAMS H

2. 4

A=

== Al

I N

3. ARttt fAME B fully connected
layerE S3l| output logitgf2 Al
Similarity score
L A J_
T T T
Convolutional layers f° Prototype layer g, Fully connected layer A Output logits

.« SH&El Prototype2 &83810{ reasoning process H|A|

« 2 classOf| CHel 178%El =2 prototypeS &

Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." Advances in neural information processing systems 32 (2019).



INTRODUCTION

« Reasoning process : Z20| i 2™ 2 LH2|7| [6H 2l IS KA

St G2

*H9| o d=

S N

6.499 x 1.180 = 7.669

4.392 x 1.127 = 4.950 2:125 x 1.091 = 2,318

3.890 x 1.108 = 4.310 1.945 x 1.069 = 2.079

X~ 1 .32.736

SES SES . 16.886

i Hih2 | off Chek

Op

Chen, Chaofan, et al. "This looks like that: deep learning for interpretable image recognition." Advances in neural information processing systems 32 (2019). 81



INTRODUCTION T
« Graph data — 6/01/ G Classfcaton

CC(=0)0C1=CC=CC=C1C(=0)0 :@ e
« Node2t EdgeZ 74, 71X 2t2| ZAIE B35 | 2{8H AR bt Moleclarvecor 741
« Graph Classification : Graph?t Ot 2§|0|£0{| £35t=X| 0=  ~——
+ Application : 2Xt £ Ol 22 221, T of¢| -~
« HEX} 1X09| Graph data - ::
o EXh= A2 Bge 2 L[] U0 GraphE Hoioh | Mgt P :
« Functional Group : &XF HH2| EME EH Rl= MEO2HT b —

Functional Group 2

Functional Group 1

2X} = Graph Functional Group = Subgraph
- 2%t subgraphE BX[517| 2[sl H= 0|2 7|2 40| K|
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INTRODUCTION

* Graph Information Bottleneck

« Original graph GZ bottleneck graph G;pE &4=56k= &A[0| prediction Yo 2=l HEE QX[S=

Functional Group 2
Functional Group 2

Functional Group 1

- 2H:Llabel YE 0|Z6t= Ol £23! Bottleneck graph G52 &H=L}l.

« Mutual Information(l) : £X variableO| C}2 variabled| ¥k O|X|= M

subgraphZ EfX|

Compression

min —I(Y, G;5) + B1(G; GiB)

Prediction Compression Graph

Graph

Prediction

g E— gIB ) Y
G1B Input Bottleneck

Target
Variable




INTRODUCTION

o
* ProtGNN ::4:!: 5::,
«  J2HE H|O[E{0l| X PrototypeE &&510 reasoning processE MiA[et 2E ‘;1:
-+ HE0| B D2 E o 20|22 ol FSH| E 2PEE A2t 2o,
EQIEHO| HI S 01E40 | E‘;ijgona'
D2EER  fAMS 8= ODZEER! QAR M4
=XAfol| Cet E-42 o= L7 ,;c/;’r‘l-\]
Iy 4281 x 1334 = 571 [Y e 2505 x 1303 = 3264
Input Graph — Input Graph T
o /\Q B . | <=-~\_ ,/“{;'\,
CYL/\ 5{/ oo b= AT f//\;\g\)‘ Q{‘}# 1491 x 1225 = 1.826
— e oy
"l\_/'

{

N 3414 X 1240 = 4233 —
— >/ /Q 1463 x 1.090 = 1595

Ne—d

Total points to mutagenic: 23.270 - - -
Total points to non-mutagenic: 9.575

Zhang, Zaixi, et al. "Protgnn: Towards self-explaining graph neural networks." Proceedings of the AAAIl Conference on Artificial Intelligence. Vol. 36. No. 8. 2022.



Zhang, Zaixi, et al. "Protgnn: Towards self-explaining graph neural networks." Proceedings of the AAAIl Conference on Artificial Intelligence. Vol. 36. No. 8. 2022.

INTRODUCTION

ICIC\:C
* ProtGNN ::g:::
«  Sl& 2PY0ilM prototypeO| 283t subgraphE EAISIX| ZotAHLE S HAsH HEE o b 4
+ NO,(Functional group)S H2i3t L2 Z52| subgraphol CheliAf &2 similarity scoreS At 7N,

— Prototype0| GiZ0] Q8 2 272 £26| TEBITE S{ofst Functional Group

— Information BottleneckE Prototype 20X EZ61 prototypeO| oZ0| £t subgraphof| 25t HEHE HMEHES

|
}
|
}
Input, g : Input, g
}
! c |
1 5 | .
'c’C\c 1 o—O— o O /c/ ! s”n(zgsub' zgpl)
f—t\c/c\:/! : é\c ¢ éc i I
c —_— ] . S - i .
TN, — Zg + Mutagenic? ¥ N —z sub e : + Mutagenic?
- e T
I | sub -x-~. ) / c | .
/‘\ ; \ /‘\0 ' ¢ — sim(Zg,,, Zg,,)
e ~-- s ~~ ! C |
NO, ! ; 9v: | !
1 |
}
______________________ | -
I
(a) ProtGNN (b) PGIB



PROPOSED METHOD

Interpretable Prototype-based Graph Information Bottleneck

* Architecture

ode Representations \ g )
Node fepresemad Gouo (B, -+ |,
. ‘. ngub Z§sub Zép " 6;‘
o 0% @ = | | - =) Q =) BT s | (BELDCLLTD- O M)
- Readout sub P
(BT, e )---+@--f-- - = &
lnPUt grap ’9 Noised Selected (E,m)""".” . 2
= . T Zgow ng . /"
= Ahi + (1= A)e : : /Pm;es FC-Layer
v . (O, BEET)--- @[ | Meree
P1, P2 Pn ----» /‘11,/12,...,/‘171 J L Z; Zg; “_‘J
Subgraph Extraction Layer Prototype Layer
1. Identify core subgraphs. sub
2. Calculate similarity scores with prototypes. ‘

3. Merge prototypes. ,
4. Predict the label from the fully connected layer. R —1 (Y3 Goub, Gp) + L(Y: Gp|Gsus) +5 1(G; Geun)

sub
l Prototype Layer Subgraph Extraction Layer




EXPERIMENT

Graph Classification

Methods
Dataset
GCN GIN GAT ProtGNN GIB VGIB GSAT PGIB PGIBcont
MUTAG | 74.50+7.89 80.50+7.89 73.50+7.43 80.50£9.07 79.00+£6.24 81.00+6.63 80.88+8.94 | 85.00+7.07 85.50+5.22
PROTEINS | 72.83+4.23 70.30+4.84 71.35+4.85 73.83+4.22 75.25+5.92 73.66+3.32 69.64+4.71 | 77.14+2.19 77.50+2.42
NCI1 73.16+£3.49 75.04+2.08 66.05+1.03 74.13+2.10 64.65+6.78 63.75+3.37 68.13+2.64 | 77.65+2.20 78.25+2.13
DD 72.53£4.51 72.04+3.62 70.81+4.33 69.15+4.33 72.61£8.26 72.77+5.63 71.93+2.74 | 73.36+1.80 73.70+2.14
Graph Interpretation
c/c—-c\c /C/c\c c/c—bc\c /C"C\c c/c.—c\c /C/c\c c/C_c\c /C/c\c
\C\C/ “c\ /C/ \C%C/ ‘c\ /C/ \C—-C/ “C\ /C/ \C—C/ \C\ /C/
“dile T o el S < o
\C\c/ —c\ \c‘c/ —c\ \C\c/ _c\ \C—c/ \c\
\C_CICX*‘ \C*C/C\I\' \C_C/C\t\. \c_c/c\:_.
(a) PGIBgnt (b) vGIB (c) ProtGNN (d) GNNexplainer
L e T 7 N T OV N T OV T 4
S & ~~ 1 & 7 | Y o \ i & A~ )
4 e B 4 Z 1N 4 71N 4 71N
\ \ \ \
(e) PGIB gt (f) vGIB (g) ProtGNN (h) GNNexplainer

M|Qrel 2RO Tt =/ 40| ¢

of 24 2RSS 571

=l
0

EfX|El subgraph?t £
e (e

X2kl RE| 2[shA BX|E
subgraph?} functional group
= SHEA 22
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Outline

= How to effectively train GNNs?

- Robustness (KDD'23)



Background

Adversarial Attacks on Graph Structures

Attack!

GNN ﬁ GNN

e Predicted as: ‘ 9 Predicted as: ‘

* Graph Neural Networks are vulnerable to adversarial attacks on graph structures.

* Unsupervised GRL models are also vulnerable to such attacks.

» Leads to the requirements of robust graph representation learning methods

Figure: Adversarial Attacks and Defenses: Frontiers, Advances and Practice, KDD’20 tutorial
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Motivation

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

data augmentation

adversarial attack - / —
~
contrastive loss \\ /T ~ o

embedding similarity

A graph with the worst-case attack P =~ \
maximizing contrastive loss ay

P W
il e e e
\\/ \/ 7/\/
Adversarial view Gadv

Augmented view G, Augmented view G,

Formulation of the adversarial attack in GCL models

Oy =arg max E[L(f(A'+8a, X" +6x), f(A%,X?))]
5A’5X€A -

Contrastive loss

A = {(0a.5x)lIdallo < Aa.

oxllo < Ax}
Perturbation budgets
« Goal: to find the optimal edges and node feature perturbations for the A!, X! that maximally increase the contrastive loss

Since we consider unsupervised adversarial attacks, a contrastive loss is employed instead of a supervised loss.
Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022
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Assumption for simplicity

. . * GCL model with a 1-layer GCN w/o nonlinearity.
MOtlvatlon * Perturbs only one edge v; — vy.

. ) « Attacked graph (Al + &4, X1
Characteristic of Adversarial Attacks on GCL graph ( aX)

o 29 = f(A' + 8,4, X1)

« Ifz? —z8* is large, 8, is effective perturbation.
« z7 —z8* is computed as follows: Each point: the node pair

z? — z?tk = (zl.2 - z}) + (z} — z?tk) ]
. g 28 ont VAW
ngh % 2.14l 1op o% gri?\“.eeshO\d\
1 aWx; Wx; gradient | %1 @@
=€ + Z — =07
i W , i J k
N+ T eNT Oty ING IV (INVE -+ 1
(4) Low = T&zofj’"v,o
Degree term Feature difference term feature similarity /253“\2 & dep
5 tie . Low
« z7 —z"" becomes large when degree term {, and feature diff. term sum of degrees
e The degree of v; is small (low-degree nodes)

The features of node vy, (i.e., X}, ) is dissimilar from the aggregation of neighborhood features in a clean graph.

Characteristic of a generated adversarial view by contrastive loss
1. Attack the nodes that have low-degree.
2. Connect the nodes with dissimilar feature
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Motivation

Applying Adversarial Training (AT) to Graph Contrastive Learning (GCL)

data augmentation

adversarial attack - \\ —
contrastive loss /\\ /T TS &
1 ~
----- embedding similarity 4 Original G | AR s~
| N
| ~
/ / \ 1 / k b ~
\/ \ e | oo \\\.
Using the attacked graph as an = N el /" DI e -/
. [ . \
additional augmentation ! TRET Py, P
adv Augmented view G, Augmented view G,
Formulation of Adversarial Graph Contrastive Learning (AGCL)
min L£(ZY,7%) + A, L(Z}, 72 72 = f(AL + 85, X!+ 8%)
GCL term AT term Adversarial graph view

Goal: robust graph representation learning based on adversarial training (AT).

Main idea: to force the representations in the clean graph to be close to those of the attacked graphs.
The adversarial graph contrastive learning model minimizes the training objective.
Figure: Adversarial Graph Contrastive Learning with Information Regularization, WWW 2022
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Motivation

AT fails to preserve node similarity !

—>

e As previously demonstrated, adversarial attacks on graphs tend to connect nodes with dissimilar features.
» The neighborhood feature distribution is changed by the adversarial attacks.

e And AGCL reduces the distance between the clean view and the adversarial view to achieve robustness.
> Neglecting the changes in the neighborhood feature distributions in the adversarial view.

We argue that existing AGCL models obtain robustness at the expense of losing the feature information.

Citeseer
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<

* Bar plot: performance improvement compared to GRACE

IAKNN(Z)  ARNN(X)|

|AkNN(X) |

indicates how much the feature information the representations have

We observe

* GRACE-AT have higher accuracy than GRACE
» They obtain robustness.

* GRACE-AT have lower OL score than GRACE
» They lose the feature information.
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Motivation

Node similarity preservation is crucial !

* As previously demonstrated, existing AGCL models obtain robustness at the expense of losing the feature information.

* However, the node feature information is crucial for the robustness against graph structure attacks [1, 2].

We argue that the robustness of AGCL model can be further enhanced
by fully exploiting the node feature information.

* Moreover, preserving the node feature similarity becomes especially useful for most real-world graphs.
* Graphs with noisy node labels
* Graphs with heterophilous neighbors
* Low-degree nodes

- To this end, we propose a similarity-preserving adversarial graph contrastive learning (SP-AGCL) framework

[1] Graph Structure Learning for Robust Graph Neural Networks, KDD 2020
[2] Node Similarity Preserving Graph Convolutional Networks, WSDM 2021



Structural Perturbations

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View Generation

@a,X) O

o o
mm O-
Random Edge/Feature Drop

Adversarial View ¥ ¥ Similarity-Preserving View
(Aadleadv) (Al’xl) (AZ‘Xz) (AkNN(X) X)
Sl -GN R S N R
........... > % mo - %Omo - _(5/, /Cin O- % g/p-
P e o || | &
[l |  m m “mm o ©mm
| v v ¥
\ Shared GNN Encoder (fg) /
Zadv Zl ZkNN(X)

Contrast J MJ

Cross-View Objective

vL(zt,z?)

View generation

* Step 1. Two stochastically augmented views, (A, X!) and (A?,X?)

* Same as the previous GCL models

e Step 2. Adversarial View
e Structural perturbations

0L 0L
= G, € RVXN
oAl T oAz A
* Adversarial feature masking
0L 0L
= Gx € RV*F
oxt T oxz X

* Existing works flip the node feature

* But, it corrupts the co-occurrence/correlation statistics.

* By masking instead of flipping, we maintaining them.

» Step 3. Similarity preserving view
* Aims to preserve the node feature similarity.
» kNN graph of node features (AKNN®) x)
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Structural Perturbations

Proposed Method

Similarity Preserving Adversarial Graph Contrastive Learning (SP-AGCL)

View Generation mm -
%/Omp Construct kNN Graph
(A X) /O ol
@) O/{>
11 1] mm
Random Edge/Feature Drop
Adversarial View ¥ Similarity-Preserving View
(Audleudv) (Al'xl) (AZ‘Xz) (AkNN(X)'X)
N (N S R e
........... [a5s | o [ mm (
(b et et 907
P - )
on: o= Ol:ll o OII Cm Ol:ll é—
¥ v v ¥
\ Shared GNN Encoder (fg) /
Zadv Zl ZkNN(X)

Contrast

ZZ
-

Cross-View Objective

vL(zt,z?)

Cross-view Training for Robust GCL

min £(Z,2) + 1 L(Z,2°Y) + 2, L(Z', ")
GCL term

AT term Similarity-preserving term

The representations of nodes with similar features are pulled together
, Which in turn preserves the node feature similarity.

96



Experiment

Preserving Feature Similarity is beneficial !

0.25
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Link Prediction: Co.CS

0.800
0.775 HE=Teme
' e S
A k-l A
0.7501 %- iy
O S22
D 0.7251 SRs
< N Sl
GRACE NS
0.7001 GCA "4
4- BGRL
0.6751 -a- ARIEL
-4- SP-AGCL
0.650 - . ! ! ;
0 5 10 15 20 25

Perturbation rate (%)

e SP-AGCL preserves the node feature similarity, which results in the robust graph representation.

AUC

0.85

0.801

0.757 %=~

0.701

0.651

0.60

Link prediction: Co.Physics

et A A
he————— y deme e Y LT 4
ke I |
- -~
S -
Y S
AoSELS -
-4-- BGRL
-#4-- ARIEL
-4-- SP-AGCL
0 L 10 15 20 25

Perturbation Rate (%)

* SP-AGCL consistently predicts reliable links compared with other baselines across all the perturbation ratios.
Moreover, ARIEL, the sota AGCL model, shows the worst performance

Node feature information is beneficial to predicting reliable links
since nodes with similar features tend to be adjacent in many real-world graphs.
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Outline

= Applications of GNNs
- GNNs for Science (2fat/AXH/A=) (ICML'23)
- GNNs for Medical Data (HE|Z2E o|& H|0|E &A1) (AAAI'23)
- GNNs for Computer vision (Scene Understanding) (AAAI'23)
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Outline

= Applications of GNNs
- GNNs for Science (2fat/AXH/A=) (ICML'23)



Introduction: Molecular Property Prediction

= Predict the properties of a molecule (M 24 01=)

————————————————————————————————

Features

- Reaction Rate

- Pressure

- Bond Type

- Activation Energy

- Stoichiometry

- Bond Energy

- Intermolecular Forces
- Temperature ---

o e e e e e R e e e e e e e e e -

e e e e - - - e e -

Graph Neural Network

q

Prediction
ex) Band gap, DOS, Fermi
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Molecular Graphs

= Molecules can be represented as a graph with node features and edge features
- Node features: atom type, atom charges...

- Edge features: valence bond type...
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DFT Targets
Message Passing Neural Network ~10° seconds |Ewo, .

Message Passing Neural Net
= Unified various graph neural network and graph convolutional S =
network approaches ~ 1072 seconds

Edge embedding

hy,.
t+1 t t
Wi m,' = = E My (h,, b, epw)
| My, Py, €ow,) weN(v) Neighbor of v
" 1 t ¢4l
/ \ hfj—i_ — Ut(hv) mv+ )
Wz W3
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Geometric Graphs

= Sometimes, we also know the 3D positions of atoms, which is actually more informative

= A geometric graph G = (4, S, X) is a graph where each node is embedded in d-dimensional
Euclidean space:

« A:an nXn adjacency matrix
. S € R™: Scalar features (atom type, atom charges, ...)
- X € R™*4: tensor features, e.g., coordinates
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Broad Impact on Sciences

= Supervised Learning: Prediction
 Properties prediction

3D Protein-ligand interaction (binding)

Geometric g Geometric

N o
GNN Prediction

* Functional properties?
* Ligand binding affinity?

* Ligand efficacy?
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(a) Xto X’tx

Learned simulator, sg

Broad Impact on Sciences

®) ENCODER PROCESSOR DECODER
_ . o — Jo 9 e 1
- SuperVISEd Learnlng' StrUCtured PrEdICtlon (©) Construct graph Pass messages (e)  Extract dynamics info
« Molecular Simulation ¢, _ «J e e ! ..
¢ ¢ X ¢ V? ¢ Vi _>\ ¢ V;'nJrl VzM _>g ¢ Yi
¢ ¢ ¢ ¢ ¢ $Y—¢ ¢ ¢ ¢ ¢ ¢

Current 3 Geometric
State GNN

A

Dynamics
Simulator

Surface mesh Underlying particles

Particle representation

105



Broad Impact on Sciences

= Generative Models
« Drug or material design

Geometric
Graph

. Geometric
GNN

Generative
Model

_ Geometric
Graph
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Geometric graph is more challenging than Molecular graph

= To describe geometric graphs, we use coordinate systems
(1) and (2) use different coordinate systems to describe the same molecular geometry.

= \We can describe the transform between coordinate systems with symmetries of Euclidean space

. 3D rotations, translations ) (2)
¢ N

However, output of traditional GNNs given (1) and (2) are completely different!
- Enforcing symmetry is crucial (Invariant GNNs)
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Schnet: Overview

= Input
- Feature representations of n atoms X! = (x4, ..., x}) with x! € RF
« Atlocations R = (4, ...,1;,) with r; € RP (D = 3 for 3-dim coordinates)

= Qutput
- Molecular total energy E(14, ..., T3)

= SchNet updates the node embeddings at the [-th layer by message passing layers

1

X = (X W) = 3 o W(r, — 1),
J

x!: node embeddings at 1 layer
r: atomic coordinates

- A filter generating function W': RP — RF is determined by
the relative position from neighbor atoms j to i

o is the element-wise multiplication
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Schnet: Invariance

= ¥/ is invariant by scalarizing relative positions with relative distances (||rl- — r]” = ||rij|| = d;j)
* ||Iri;l| is invariant to rotations and translations

» Hence, each message passing layer W' is invariant
- Aggregated node embeddings ng oW'(r; — ;) s invariant

J
- Node embeddings are invariant!
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Predicting Solvation Free Energy (2 0} 2} X} 0| L4 X|)

= Solvation free energy
« Change in free energy for a molecule to be transferred from gas phase to a given solvent

« Quantifies solubility of drug molecules
« A large negative value - high solubility
« A lower magnitudes/positive value = poor solubility Solute

Solvation free energy

AGsolv

)
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Introduction: Relational Learning

= Relational Learning
- 5 OHM AtO12] 2EHIE OI=5k= 1A ot =0k

- £3), F 315t 27 Aj0|o] BSOSt 242 318 2Ol 02 S

« Examples
+ ZAK| (Chromophore)2t 801 (Solvent) 2SS (2] &=t &
- 24 (Solute)2t &0K (Solvent) 7 B2 IHe| B3l x 0|

o
+ 7572 2= (Drug) & A0 g=is el B4 o=
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Introduction: Functional Group

= 2t827| (Functional Group)
- QY sletE0| ot B H EMN S AYSHED ST HY S ol EY HXTt 22 X
- Q7 |afet Bl H20f 20| Hety| M2t BESEat M S| S2IE /2ty gAI0| #Hatet
- Y2 EEI|E 2= oS0l EYR tHER SAISHH, RAR! atat BES0| UoH

- Examples
- Hydroxyl Group #t2&& X2 82 APl 582 /X U=
@)

@)
(@)
. > Alcohol, Glucose 20| Hydroxyl 12& ool 252 2550 2 S0 Lol 8ot =2

87|

(TTTTIIIY : H OHOHOHH OHO

' R—0 | I T T T I I |
SR T S 0 o
' H

i i H H HH OHH

S ——— y Alcohol Glucose

T2, Sft 27 AO|Q] ASELES Ot DS X187|S T|Ho 2 St 20| i FQ3

=
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Introduction: Representing Molecules as a Graph

= Molecule 2 Graphz Hod Ots
= Functional Group = Subgraph 2 H3 Jt=

Functional Group 2

Functional Group 1

Molecule Functional Group
(=Graph) (=Subgraph)

%|Z Information TheoryE ?|Ht9 2 Graph 7t E0|M 529t SubgraphE &= ZEI0| 5
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Information Bottleneck

Pt B

= Solution: Information Bottleneck Theory
- HH0|| T =

variable TE et

= T1-d
> &, inputH|0|E| XE X|CHot L=6HHAM target 2f Y= Al &
> Noise 0i| robust$t representation & &&e [ 20| AL E

ng T A|.0|o| Al-g X—IEEF X| |.
min—=I(Y;T) + SI(X;T) | > 1orxolcist 522 sastoz gice
T - Compression

TRLY ARO|2| Al MEZF X|CH2}
> T2tY Of Chet WEE X[CHot JHX| 0 Qlo{oFst
- Prediction

Information Bottleneck Objective

(I(X,Y): Mutual information between X and Y)

= [/ B&9| trade-off 0f| Cis Theoretical ot &
- Random variable X, Y 2} =R S M} Y o] MHE X|CHst

OlA J2HTof|M 523t SubgraphS OS] Atopd 2QI0}?

AH=E
QX|GHHEM X o] HHE X[AHO 2 B= Bottleneck
E4TE S
4 I
Compression Prediction
Input Bottleneck Output
Variable Variable Variable
\ /
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Graph Information Bottleneck: Overview

» Information bottleneck theoryE J2HZ0{| O{EHA| X%t 7101017

= Information Bottleneck Graph (IB-Graph)
- 7|& Graph 2| g2 & Z|tfet 2ESH= Subgraph
- Subgraph£ Bottleneck variable 2 Z&&
- Target Y HF=0| 7 2%t Subgraph 6,5 E &= 252 Formulation

Gig = argmin —I1(Y; Gig) + PI(G; GiB)

g8
Compression Prediction
—— E—)
9 918 Y
Input Bottleneck Target
Graph Graph Variable

Functional Group
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Recall: Functional Group

= 87| (Functional Group)
. ©7|3

) Oo= =20 1=2=
. 22 XkQJ|Z 2= BISH20| EMO [EE OARSIH SARS

= X L- —/ O L- T = Tr
« otH 84 (Chromophore)O| 0 &0 (Solvent)2t BFEEH=X|0| Ti2tA S QS| Z-26H=
AEIILLEE

20| sfot HIS T E448 ZHSH=N| SRS AES 1= £ ATt 52 X
L

rr

- Examples: C-CF3 #12= 24| 01| Lot oll=E W=
- OfX|2E C-CF3 1201 &Xt2] 2| F0 Cifer 8o =0 D[X|= B2 CholiA= E24 ¢l B
- [MEtA, ofct BEZ0lM SRt 2875 &Y I 8012 SFE e ERH0[ U2

-1 -O

________________

i F
C—C:— F é© Water 5© oil

Decrease Solubility

\ 7

7

7|Z&2] Information BottleneckO|22 2= Material ScienceX|Al2 M|CHE DEZISH £~ 9IS
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Proposed Method: Conditional Graph Information Bottleneck

LMII LMIZ £pred
s 3
[ ]
Zz V4
Ghy [N (ETzg
T Readout

Tl
/11 /‘{Nl —

'ql

\N01se

11..\1 1

Readout

T Sampling

t gCIB

,pNi = _
H?= (E*||E%)

Importance

L

Hl=(EY||ED)

Node
Interaction I

min —I(Y; QéIBIQZ) +f I(gl; gcl;IB |g2)

Mutual Information 2| Chain Rule 0f L2 Conditional Mutual

Information & &l 2 2t term 2| upper bound S

s

\

~1(Y; GoplG®) = —1(Y; Go, G°) + 1(Y; G°)

~I(Y:Gerp. 6°) <Eg goy[—logpo(YIGep. 67)]

[(GYGplG?) = (Gl G G%) ~1(Gip: G°)

1
I(§(1;IB;§1,Q2) < Egl,g2 [_E logA+ _A+ _B2]

2Nl 2N!
= Lyg (Go 61.G%)

~I(Ger: 6°) <Eg g2 [-logpe(G°|Gerp)]

= ‘LMIz(g(liIB’ G%)

Prediction Loss

Compression Loss
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Result: Qualitative analysis

o) p \\ —
® —
Ll oA o=

(a) Reaction with ordinary solvent (b) Reaction with liquid oxygen solvent

(a) YEFXO] solventl} HI
ofot IR0 B BES 3| 07|= 7[&2] zfat XA Dt align

(b) T3t solventl} BES (ex. AKX LF4)
chromophore2| &4 £20| BIEITHD 047]= 22| $fsth X|A{2f align

N0
I

Oxygen-Carbon Nitrogen-Carbon

(c) Chromophore: EDAC

(c) CfXst solvent®} B2 (Trans-ethyl p-(dimethylamino)
cinnamate (EDAC))

solvent@| afatd =40 2t 22 ChromophoredME SRt BE2S L
= BX[

- Case1) Benzene solvent
Nitrogen-carbon #E£2| 22 2H0| H2 A0t 5L
- Benzened 2 £=4d solventl} BEFES1 | IR

- Case2) Ethanol, THF, 1-hexanol, 1-butanol solvent
of 2o I4o| F2 12XV 5y
- Ethanol 2 THF &4& =24 solvent2} EFESH | &
- YHPEO 2 1-hexanol 2 1-butanol2 £=4 solvent2 EF&|X|3F
= Q5 local ot Fd&E L= E8= 718
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Outline

= Applications of GNNs

- GNNs for Medical Data (HE|Z2E o|& H|0|E &A1) (AAAI'23)
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 Integrate the multi-modal medical data (image and non-image data) for more accurate clinical decisions

Problem definition

DIG

MMS

Patient Age
1 42
2 73
3 80
4 29
5 65

34

25

38

25

34

Image data
TRA  ADA
-4 18.6
-15.8 31
-1.5 14.6
94 213
-10.8  25.6

28
20
29
27

25

Non-image data

Fusing Method

(research goal)

Capture important information from various aspects of the given data

Clinical Decision
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Previous works

Probability Fusion Feature Fusion Learned Feature Fusion
Image-Only Non-Image-Only
Age:| xx Age:| xx | Age:| xx
/' i XX BPE:| xx
‘e | Indication: | xx P Indication: | xx [ndication: | xx
P < :
ResNet50 l ResNet50 ‘ FC-1024
\._....$ N RelLU
;_zoff..,.f T
| FC-1024 | FC-1024 | ‘ FC-512 FC-512
ReLU __RelU | @ ReLU ReLU
Dropout 0.25 : H I ) ¢
FC-512 FC-512 | ‘ HCal022 e ==
- : ReLU I ‘
ReLU ReLU | e Cu_s)
1 Dropout 0.25
Dropout 0.25 Dropout 0.25 |
Fe1 P | Fo512 | propeyt 028
Sigmoid Sigmoid | : ReLU ;
v A : Dropout 0.25 3 FC-512
9 § | : ReLU
/\ FC1 Dropout 0.25
Fuse : Sigmoid : l
ki/ FC-1
FC-16 Sigmoid
ReLU : !
FC-1
Sigmoid : :
A B C

Naive multimodal fusion method

* Previous work demonstrates incorporating non-image data with images can significantly improve
predictive performance

« But naive integration of the modalities cannot fully benefit from the complementary
relationship between the modalities.

G. Holste, S. C. Partridge, H. Rahbar, D. Biswas, C. |. Lee and A. M. Alessio, "End-to-End Learning of Fused Image and Non-Image Features for Improved Breast Cancer Classification from MRI," 2021 IEEE/CVF 121



M Otlvat l 0 n Medical data is multi-modal in nature

Highest similarity value in each row

« Routine clinical visits of a patient produce not only image data,
but also non-image data (i.e., clinical information).

« Multiple modalities of medical data provide
5 T 4 & different and complementary views of the same patient.

(a) Patient of CDR 0.5

Integration of diverse and complementary views from medical data can make more
informed and accurate clinical decisions.
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M Ot lvat l 0 n Diverse aspects of Clinical data provides rich information on patients

« Patients who suffer from the same disease share highly similar
. . I non-image data compared with those in different classes

0.8

n
P 0.6

CDR
0.5
CDR

CDR

« But diverse aspects of non-image data induce

“ complex similarity relationships between patients

e

oR oR Example
All non-image  Non-image Features Non-image Features « Type 1 feature fail to find connection between CDR 1 and 2
Features type 1 type 2 « Type 2 feature can make preemptive clinical decision on CDR 1

(Family history) (Cognitive Abilities)

RQ1: How to incorporate complex similarity relationship between patients?
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M Et h Od 0 I Ogy How can we capture the relationship between patients

 Single graph may miss the inherent complex relationships between patients
» Single graph considers all relationships as the same
» Whereas in reality, different relationships can have different characteristics and
properties

« Multiplex network considers the multiple relationships between nodes as
different layers in the network
» Each layer represents a specific type of relationship
» Multiplex network can capture the complex relationships between patients, as it
acknowledges the heterogeneity of relationships in the network

Multiplex Network

Goldblum, B.L., Reddie, A.W., Hickey, T.C. et al. The nuclear network: multiplex network analysis for interconnected systems. App!/ Netw Sci 4, 36 (2019). 124



Methodology

How can we capture the inherent complex relationship between patients ?

r—l (a) Feature Clustering I

Patient  Age DIG

TRA ADA MMS City APOE RAV

N\

42 34 -4 18.6 28
73 25 -15.8 31 20
80 38 -1.5 14.6 29

29 25 -9.4 213 27

oA W N R

65 34 -10.8 25.6 25
\

2

9
9
4
7

6

[}

1 4
o a4
1 4
[} 5

Column-wise
1 K-means Clustering
Type 1: Age, City

Type 2: APOE
Type 3: ADAS, MMSE

r—| (b) Multiplex Network I

p?(3,5) > @

Patient 4 @

g Patient 1

-

00

Patient 2

pP(2,3) > oW

Q Patient 3

+ Using Column-wise K-means Clustering, divide non-image data into non-overlapping |R| types of features

« Using cosine-similarity and threshold for each type of non-image feature, construct multiplex network

C € IR|V|XFnon—img —_— C(l), C(z), e C(T) e C(K)

A", j) = {

P (i, 5) =

Column-wise
K-means

1 if p (i, 5) > 617,
0 otherwise
c(.?“) -c(.T)

J

les™ 11-11e$ )
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M Et h Od 0 I Ogy Overall Frameworks

Overall Frameworks of HetMed

S-

Patient i

~— _Image Data__ |

@l - g6

Image b; Image Preprocessing

Pre-trained
Image Encoder

—_

M

Z;

Concatenation

~—| Non-Image Data |

. Non-Image c;

@) l:%:]j X;
— &)
- = BT => Diagnosis
Ci = Y.

Multiplex Network Construction

Image Data

Image Preprocessing (atlas transform)
Learn the image encoder (pre-trained with non-medical image)
Extract embeddings of images

Non-image Data

Column wise K-means Clustering

Construct multiplex network via cosine similarity of each patient

Learn Multiplex Network
Node feature = Concatenate (image embedding, non-image data)

Learn consensus embedding
Diagnosis
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Outline

= Applications of GNNs

- GNNs for Computer vision (Scene Understanding) (AAAI'23)
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Scene graph generation (SGG)

= SGG aims to represent observable knowledges in an image in the form of a graph

- The Knowledges include 1) object information and 2) their relation information
- E.g., Object information: man, horse, glasses, - Relation information between objects: feeding, wearing,

Input (Image)

Step2. Relation Class
Prediction

Output (Scene Graph)
4 7\ Step3. Select Top-k
Triplets
Man —» Waiching — Man
\ B Vaas i\ .
Wearing s BN el
N\
Pants
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Heterogeneous graph

= Heterogeneous graph is a graph-structured data with more than one type of nodes or edges

- By considering associations between multiple types of nodes or edges, many works demonstrate that
considering the heterogeneity of nodes/edges are helpful for learning the representations with the

semantic information.

author paper venue

><B P o2 V1
ds & B P KDD. V,
g 24 P4

[Academic Graph]

[KDD'19] Heterogeneous Graph Neural Network. Zhang et al.

user item

u 8 —8M i,
Uz@

I,

u; iy
u, 8 (2 s
[Review Graph]
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Previous works

= In the literature of SGG, it's important to capture the context of neighborhood

- Considering <kid, holding, rail>and <woman, watching, elephant> is helpful for predicting <kid,
riding, elephant>
- Compared with when kid and elephant are considered independently

Entity Anim

Human

3 . Product

~

>

= wearing

id " s glephant +—% kid

|

woman

watching

. holding

3 watching

/

7

[Example of a context-aware model]

- Context-aware SGG employs RNN, GNN, ---, Transformer to aggregate features of neighboring objects.
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Limitations of previous works

= Previous works consider the scene graph as homogeneous graph
- The assumption of homogeneity restricts the context-awareness of the visual relations between objects.
« Since it neglects the fact that predicates highly dependent on the objects where the predicates are associated.
- For example, when we consider <kid, riding, elephant>, we know the opposite triplet <elephant, riding, kid> is not
likely to appear.
 Because it is usually “Human" that rides “Animal”.

)

S
3
3
o
S

/ watching wearing \
3 watching = .
watching
—
holding
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Our Goal

= We propose the Heterogeneous scene graph generation (HetSGG) framework

- HetSGG generates a scene graph with relation-aware context
- Consider both object types (e.g., Human, Animal, Product) & relation types (e.g., Human-Animal, Human-Human, --)).

- We propose a novel message-passing called relation aware message-passing (RMP)
- Naturally captures the semantic between “Human” and "Animal” to predict <kid. riding, elephant>

Entity Anim R M P
Human
Y . Product o

d 9", elephant +—<' kid

.\

»

- elephant

Q >

>

g watching

N

Q

=]

. holding
3,
(o

/3 watching /= wearing
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Relieving long-tailedness

= Overall predicate distribution is long-tailed
- Problem: Model primarily predicts the meaningless predicate (i.e., on, has)

= Observation of the reformulated distribution in condition of predicate types
- Animal-Human(AH): head predicate (e.qg., “wearing”) in overall distribution

becomes tail predicate in AH distribution
- Human-Human(HH): tail predicate (e.g., “playing”) makes up a small proportion
of the overall distribution, but the proportion improves in HH distribution

Overall predicate distribution

: g

¥

PP PN S PP 1 [
g E3pe £oF rgf 3853 358eatoedafe
8,:. ﬁg E = !Sga é §§:§ Eg c

AH predicate type conditional distribution

aaaaa
a17s|

““““ !!!4! 3532555!55525535s!ggzz§'§§§ESE§f§E§iggiz-e =
“8 V338clre®r Bere gPitEreslyiiys pofpeitrpdife
: Bl :g§ U ST R

We expect the long-tailed problem is naturally alleviated in the formulation
of heterogeneous graph distinguishing the relation type
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Experiment: Qualitative results

= a) BGNN predicts “hand hold boy”, but HetSGG predicts “hand of boy”
- HetSGG predicts the correct predicate by filtering the non-sense semantic relation, such as “hand hold boy”

= b) BGNN predicts “tree on hill”, but HetSGG predicts the fine-grained predicate (i.e., growing on)
- HetSGG alleviates the long-tailed predicate distribution, thus predicts the fine-grained predicate

Image Ground Truth BGNN*¥ HetSGG¥

of "\\“b
. @
1o
of boy/

' of P 6@6
iy

@ %
R

o
o

Red predicate: Incorrect for BGNN
Blue predicate: Correct for HetSGG and Incorrect for BGNN

[Qualitative Result]
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Outline

= Qverview
= Random walk-based Methods
= Graph Neural Networks (GNNs)

= How to effectively train GNNs?
- Self-supervised Learning (AAAI'22)
- Explainable Model (NeurlPS'23)
- Robustness (KDD'23)

= Applications of GNNs
- GNNs for Science (2fat/AXH/A=) (ICML'23)
- GNNs for Medical Data (HE|Z2E o|& H|0|E &A1) (AAAI'23)
- GNNs for Computer vision (Scene Understanding) (AAAI'23)
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