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GRAPH (NETWORK)

= A general description of data and their relations




VARIOUS REAL-WORLD GRAPHS (NETWORKS)
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MACHINE LEARNING ON GRAPHS

Classical ML tasks in graphs:

= Node classification
 Predict a type of a given node

= Link prediction
« Predict whether two nodes are linked

= Community detection
- Identify densely linked clusters of nodes

= Network similarity
« How similar are two (sub)networks

Link Prediction
(Friend Recommendation)



TRADITIONAL GRAPH REPRESENTATION
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Adjacency matrix

How to effectively and efficiently represent graphs is the key!

— Deep learning-based approach?

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml



CHALLENGES OF GRAPH REPRESENTATION LEARNING

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...
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- RNNs for text/sequences ...
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= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)

Et

- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019



THIS TALK

= How to learn graph representation in various types of graphs?
« Homogeneous Network Embedding
- Attributed Network Embedding
« Multi-aspect Network Embedding
- Heterogeneous Network Embedding

= How to effectively train GNNs?
« Self-supervised learning
« Going deeper with GNN

= What is not covered in this talk?
Dynamic graph

Expressiveness of GNN (e.g., isomorphism)

Robustness of GNN (i.e., adversarial attack)

Graph-level operations (i.e., graph pooling)



OUTLINE

Homogeneous Network Embedding

Multi-aspect Network Embedding

Attributed Network Embedding

Heterogeneous Network Embedding

= Training GNN
« Self-supervised learning
« Going deeper with GNN

= Applications of Graph Machine Learning



OUTLINE

= Homogeneous Network Embedding



HOMOGENEOUS NETWORK

= A graph with a single type of node and a single type of edge

Num. node types = 1

Num. edge types = 1
u ge typ Word cooccurrence graph
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Homogeneous network

Protein-Protein Interaction Graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word co-occurrence network (range 3 words) - ENG.jpg
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https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

PROBLEM DEFINITION: NODE EMBEDDING
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= Formal definition
- Given: Agraph G = (V,E, W),
« Vis the set of nodes
« E is the set of edges between the nodes
« W is the set of weights of the edges,

- Goal: To represent each node i with a vector, which preserves the structure of networks.

= |dea: Similar nodes in a graph have similar vector representations

(Figure credit) https://arxiv.org/pdf/1403.6652.pdf




DEEPWALK

= Deepwalk converts a graph into a collection of node sequences through random walk
= Treat random walks on networks as sentences

= Distributional hypothesis
- Word embedding: Words in similar contexts have similar meanings (e.g., skip-gram in word embedding)

- Node embedding: Nodes in similar structural contexts are similar

Wv4 SV — VU3 — U] — Uy — V1 — Uy — Us] — VR

% o o« | e Wy, = 4
g N, | 170 — Maximize: Pr(vs|®(v))
i’ = Pr(vs|®(v1))

exp(ii'; u;)

p(v;lv)=
2

X ;
p(l/l k ul) Deepwalk: Online learning of social representations, KDD2014
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NODE2VEC

Idea: Find the node context with a hybrid strategy of
« Breadth-first Sampling (BFS): Structural equivalence

 Depth-first Sampling (DFS): Homophily

Biased random walk with two parameters p and g
 p: controls the probability of revisiting a node in the walk

 g: controls the probability of exploring “outward” nodes

Find optimal p and q through cross-validation on labeled data

Interpolate between BFS and DFS

node2vec: Scalable Feature Learning for Networks, KDD2016
13



NODE2VEC: CASE STUDY

= p=1,q=2 > BFS-like behavior
« Discovers structure roles

1 lf dtx =0
0.5 if dyy = 2

= p=1,q=0.5 > DFS-like behavior
- Discovers clusters/communities

1 lf dtx =0
2 lf dtx == 2

% if dey = 0
1, _
ka lf dtx — 2

X
node2vec: Scalable Feature Learning for Networks, KDD2016
14



LINE: LARGE-SCALE INFORMATION NETWORK EMBEDDING

Deepwalk: DFS
Node2vec: DFS + BFS
LINE: BFS

First-order Proximity

:—Qé:

The local pairwise proximity between the nodes
- However, many links between the nodes are not observed
- Not sufficient for preserving the entire network structure

Idea: To preserve the first-order and second-order proximity

Second-order Proximity

o BV

Proximity between the neighborhood structures of the nodes

LINE: Large-scale Information Network Embedding, WWW2015
15



PRESERVING THE PROXIMITY

First-order Proximity

Objective
» Empirical distribution p(v,v,)= Wij ’
o PY o of first-order proximity: =~ E w
® Q—Cé. (mmEE O,=KL(p,,p,)=- E w,logp,(v,,v,)
® Model distribution of D (v,v.)= exp(u; u;) (i./)EE
® first-order proximity: et E exp(ii’ii,)
(m,n)EVxV
Objective
Second-order Proximity W .
Empirical distribution ]32(\/]. 1v.) =2 . _
PS ® ® of neighborhood structure: E Wi 0, = EKL(pz( v),p,(1v))
.‘ .{». kev l
® ®  Model distribution of exp(u'; U;) = E wylog p, (v, 1v;)
o neighborhood structure: %) (Vj Ivi) - T — D
E exp(u', u,)
=

LINE: Large-scale Information Network Embedding, WWW2015
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SDNE - STRUCTURAL DEEP NETWORK EMBEDDING

= ldea: Shallow models cannot capture the highly non-linear network structure

- Deepwalk, node2vec, LINE are all shallow models
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Structural Deep Network Embedding, KDD2016
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GRAREP

= |dea: Consider k-hop node neighbors

* Red: Target node
: 1-hop neighbors
« A(i.e., adjacency matrix)
«  Blue: 2-hop neighbors
° AZ
7 .« Purple: 3-hop neighbors

|2, 25 — Aq |

3

(u,v)eV XV

Concatenate all the k-step representations
[Zl,ZZ, ...,ZK]

GraRep: Learning Graph Representations with Global Structural Information, CIKM2015

(Figure credit) Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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DEEP RECURSIVE NETWORK EMBEDDING WITH REGULAR EQUIVALENCE

= |dea: To preserve regular equivalence
- Example of regular equivalence (node 7 and node 8 are regularly equivalent)

= Approach: The definition of regular equivalence is recursive
- If two nodes are regularly equivalent, then their neighbors are also regularly equivalent

 Solution: Represent embedding of one node by the aggregation of its neighbors’ embeddings.

Li= ) X0~ Agg({Xulu € N@I I},

veV

Deep Recursive Network Embedding with Regular Equivalence, KDD2018
19



DEEP RECURSIVE NETWORK EMBEDDING WITH REGULAR EQUIVALENCE

= How to design the aggregation function? LSTM! (Variable size of neighbors)

L1 = ) |IXo - Agg({Xulu € N@}IIZ.

=, = Regularization
(¥
- The model may degenerate to the trivial
reconstruct . solution with all the embeddings being 0.
‘ - How can we avoid the trivial solution?
S A . Use node degree as the weakly guided
LSTM | | LSTM | | LSTM information
xT3 le xT2 * The learned embedding of a node should be
L(; \g‘ N able to approximate the degree of the node
(© Lreg = ), llog(do + 1) - MLP(Agg({Xulu € NI,
veV

-[: — Ll + ALreg

Deep Recursive Network Embedding with Regular Equivalence, KDD2018
20



OUTLINE

Multi-aspect Network Embedding

21



(Figure cre

IS A SINGLE REPRESENTATION ENOUGH?

Colleague

Purchase history Social network

How to differentiate among multiple aspects?

dit) Is a single vector enough? exploring node polysemy for network embedding, KDD19

22



Is a single vector enough? Exploring node polysemy for network embedding, KDD2019

POLYDW

= Define the aspect (sense) of each node by clustering the adjacency matrix (offline clustering)
= For each node and its context nodes, sample an aspect

= Update the node embeddings of the sampled aspect only

Deepwalk PolyDW
Lpw(0) = ) log pol0) = > log p((N(v:),v1)I6) Lporypw(0) = ) log p(ol, 0) G
oii) Z 0€0 | > 0€e0 1\ from clustering)
- log p(vjlovi), — 1 P.0) - P,0
2 5 > log [ plols(o). P.6) - p(s(o)|#. 0)]
Random Walk 1 (o4) o€ O S(O)
vl L. |
-6 W N > > > p(s(0)|P,0) - log p(ols(o), P, 6)
i s v, |H —\/ 0€0 s(0)
I @ Vo o . i
o/ g i [ = .[ 3 log p(ojloi.so)]
;’F == :5: Random Walk 2 (0;) ( facet sampling for context nodes R OGO S(O) Cluster Uj EN(Ui)
|g O: Voldl ] peep ] ul BLE membership
R I T N . e L
g Pl | \/ | om e e g 3 N(v): context of node v
P ’ :JND | _I;Jl *[] ¥ 3, s(0): A set of possible aspects within an observation o

Input Network Node Facet Distribution Facet Assignment Objective Optimization 23



ASP2VEC

= Adopt the Gumbel-softmax trick to dynamically sample aspects based on the context
« PolyDW: Offline clustering

Gumbel-softmax
Sample the aspect

Embedding of v; Embedding of N(v;) regarding aspect s
Aspect of node v; = that gives the
. S - [
p( |N('Ul)) — Kexp[<Pl’ Readout ()Y(vl))> + gS]/T hlghest value
Zs’zl exp[ (P, Readout(® )(N(vl-)» +gs]/T (Continuous relaxation of
Local context of v; discrete random variable )
Network
Probability of v; being Tareet:
selected as aspect s given arget- 1 Context (N (v,))
ot V1) e N T
Random
walk S . .
Unsupervised Differentiable Multi-aspect Network Embedding, KDD2020
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SPLITTER

= Given an original graph, compute a persona graph
« Add constraints on Deepwalk to relate the persona graph with the original graph

(a) original graph G

minimize
DGp

ao.,,dz)\do
i

(b) ego-net of a (c) splitting a in two personas (d) ego-net of ¢ (one persona) (e) persona graph

—log Pr ({vi—w, -+, vitw} \ vi | DGp(vi)) —AlogPr (v, | DG, (v1)).

Predict the original embedding of v;

Predict the context of v; using the persona of v; using its persona

Is a single embedding enough? learning node representations that capture multiple social contexts, WWW2019
25



OUTLINE

= Attributed Network Embedding

26



ATTRIBUTED NETWORK:

EXAMPLE OF NODE ATTRIBUTES

= Any type of information that is related to a node within a graph

= Example

* @R Petar Veli¢kovié
N So you've got a (trained) graph neural network, giving you node latents. What
! kinds of tasks can you then solve with them? Here's a concise and abstract
summary. :)

Inspiration from 's slide deck on GNNs.

TikZ code coming soon.

Node classification
5 = f(h)

Graph classifi

1(Zih)

Claputs
(X.A)

ink prediction

« User content in social graph
« Reviews in e-commerce graph

Paper abstracts in citation graph

Product image in

Top reviews from the United States

Ralph E.

'Y< Do not recommend....VERY short life!
Reviewed in the United States on September 16, 2017

Verified Purchase

mmerce graph

\ Thomas Kipf
Very excited about the release of Jraph. Finally an easy-to-use, extensive and
fast Graph Neural Network library in JAX! Fully compatible with NN libraries
such as Flax and Haiku:

Jraph - A library for graph
neural networks in jax.

Unsupervised Differentiable Multi-aspect Network Embedding

Chanyoung Park!, Carl Yang?, Qi Zhu', Donghyun Kim*, Hwanjo Yu®", Jiawei Han'
!Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2Emory University, GA, USA, 3POSTECH, Pohang, South Korea, *Yahoo! Research, CA, USA
{pcy1302,qiz3,hanj}@illinois.edu,j.carlyang@emory.edu,donghyun kim@verizonmedia.com,hwanjoyu@postech.ac kr
Network Adjacency

ABSTRACT

Network embedding is an infl ial graph mining technique for O
representing nodes in a graph as distributed vectors. However, the ’
majority of network embedding methods focus on learning a sin-
gle vector representation for each node, which has been recently
criticized for not being capable of modeling multiple aspects of a
node. To capture the multiple aspects of each node, existing stud-
ies mainly rely on offline graph clustering performed prior to the

001...000

011010

Pt

) Clustering-based aspect assignment

@O—O—@

)@@
@

—@
)@

ased aspect assigns

| was very pleased with the quality of the product as | received it. But after about one week of charging it
became intermittent for a couple of days and then stopped working. | think it is important to point out

actual embedding, which results in the cluster membership of each
node (i.e., node aspect distribution) fixed throughout training of the

embedding model. We argue that this not only makes each node Figure 1: a) Clustering-based aspect assignment that fixes

that this cord is in one location, | sit my phone on a table surface and let it charge all night. So no moving,
no using it while connected or such. | also an not the type of person that unplugs it by pulling on the cored
or such. This just proved to me that they cord was either defective as received or poor quality (or maybe a
combo of both). Now it is much cheaper than an APPLE cord, but | would expect more. Wish it would have

done better....I had | hopes being an Amazon product!

392 people found this helpful

Helpful Report abuse

always have the same aspect distribution regardless of its dynamic
context, but also hinders the end-to-end training of the model that
eventually leads to the final embedding quality largely dependent
on the clustering. In this paper, we propose a novel end-to-end
framework for multi-aspect network embedding, called asp2vec,
in which the aspects of each node are dynamically assigned based
on its local context. More precisely, among multiple aspects, we
dynamically assign a single aspect to each node based on its current
context, and our aspect selection module is end-to-end differen-
tiable via the Gumbel-Softmax trick. We also introduce the aspect
regularization framework to capture the interactions among the
multiple aspects in terms of relatedness and diversity. We further
demonstrate that our proposed framework can be readily extended
tol networks. ive experiments towards various

the aspect distribution during the embedding learning
b) asp2vec dynamically selects a single aspect based on the
local context nodes.

1 INTRODUCTION

Networks constitute a natural paradigm to represent real-world
relational data that contain various relationships between entities
ranging from online social network of users, and academic pub-
lication network of authors, to protein-protein interaction (PPI)
network in the physical world. Due to the pervasive nature of net:
works, analyzing and mining useful knowledge from networks has
been an actively researched topic for the past decades. Among vari-
ous tools for network analysis, network embedding, which learns
continuous vector representations for nodes in a network, has re-

27



CHALLENGE IN ATTRIBUTED NETWORK EMBEDDING

= Node attributes and network influence each other and are inherently correlated
« Ex. High correlation of user posts and friend relationships

= How to jointly model two different modalities: graph topology + node attributes

= Highly complex (large scale)
« Number of nodes and dimension of attributes could be large

28



DEEP ATTRIBUTED NETWORK EMBEDDING (DANE)

= |dea: The proximity in an attributed network depends on not only the topological structure but also the
attribute

M = A + A% + --- + At (Capture up to t-hop neighbors)

——————————————————— N n ‘ L=Lf+Lh+LC+LS

| First-order |

() proximity loss () Ly = Z ||M,L — M;. H%
I ® o (@) e | —
i o (@] High-order =
Topological @ O (@) (@) e roximit
structure : = 8 D eeeee) O oo o = : P loss Y sij = 1if node i = node j )
: ol IS O M o |ef 1 = The topological structure and
L — 87'-7 —m. VLTS .
1 lL —— \__L | Le gpw (1=p) attributes are the two modal
Consistent and T information of the same network
complementary loss Dij = .
o= ity St : T 1+ exp(=HY (H)") - — Learned representations should
7 | : : o |HZ : : . be consistent and complementary
L emantic
: : :D : :>.000.0:D : :>oooooo : :D : prc:);;rzlty 5
| (0] o ©) e o L, —Z”Z —Zi |3 -
| © First-order ©

E;;>0 E;; >0 7 _ 1 Deep Attributed Network Embedding, 1JCAI2018
1+ exp(—HZ(HZ)T) 29




SEMI-SUPERVISED/SUPERVISED GRAPH REPRESENTATION LEARNING

= So far, we have looked at unsupervised graph representation learning methods
« Mainly focused on preserving the proximity or graph structure

= What about when we are given some supervised tasks?
- E.g., node classification

= Goal: Learning node representations for specific tasks considering node label and attribute information

Adjacency matrix
A

) ) . =) é§y=f<x)

X Y [
; Node embedding Prediction
‘ matrix

Attribute matrix Partial label
30

(Figure credit) https://chuxuzhang.github.io/KDD20_Tutorial.html



PLANETOID

= |dea: Random walk based on graph structure and labels (An extension of Deepwalk)

Sampling based on graph

random <r,
(i=l,c=4,y=1)

p Random walk

Vi
E random =r, | Predict class label
(i=2,c=3,y=1), ?
-éémrﬁbiiﬁé"t}égé_d_ah labels Softmax

/\

Predict graph context

t

PR ©) = 5 expt (o7

Softmax

Hidden layer

Hidden layer

Input feature

NN\
S~
-~

~
~\~
~

Embedding e

1
—7 Z log p(yi|Xi, €;) — AE(; 0. loga(yw! e;),

=1

Supervised part Deepwalk

exp[h®(x)", h'(e)"]w,
hi(e)T|w,’

Revisiting Semi-Supervised Learning with Graph Embeddings, ICML2016
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BACKGROUND: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGES

= Convolutional filters
« Local feature detectors

- A feature is learned in each local receptive field by a convolutional filter

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution 1 /—M
(5 X 5) kernel Max-Pooling (5 X 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2)

0

1

2

INPUT nl channels nl channels n2 channels n2 channels ||| ‘ 9
(28 x 28 x 1) (24 x24 xnl) (12x12 xnl) (8 x8xn2) (4x4xn2) 4 OUTPUT

(Figure credit) https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



LOCAL RECEPTIVE FIELD ON GRAPHS

= How should we define local receptive fields on graphs?
« Local subgraphs

= However, there are no orders between the neighbors
 In images, the neighbors of a node can follow specific order

(Figure credit) https://deepgraphlearning.github.io/coursewebsite/schedule

Graph

33



Semi-Supervised Classification with Graph Convolutional Networks, ICLR2017

GRAPH CONVOLUTIONAL NETWORK (GCN)

= Node features: X € R™¥F

= Adjacency matrix: A € R™*" . ~

J y . Z=f(X,A) = softmaX(A ReLU (|AX (0)) W(l))
= Add self link: A = A+ Iy ,
= Degree matrix: D;; = Zj Aij Set of node L=— Z ZYlf InZ;f
= Weight matrix at layer [: W € RF*4 indices with labels g = !

Hidden layer Hidden layer

Input Toe . e ® Output

u o /.' RelU | o //.° ReLU F: \
LR \ R e e A Neighborhood

ct o o B Aggregation




GRAPH SAMPLE AND AGGREGATE (GRAPHSAGE)

_ - e - i 2
Motivation: Can we train GCN more efficiently-: « Variants of AGG

= |dea: Sample neighbors

= Mean:

P, bl
z;/ AC= D TN

. + Pool =t

= Transform neighbor vectors and apply symmetric
vector function.

element-wise mean/max

; k—1
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label AGG = El({QhU , Yu < N(’U) })
from neighbors using aggregated information
= | STM:
Concatenate

= Apply LSTM to random permutation of neighbors.
AGG = LSTM ([hE~! Vu € 7(N(v))])

Neighborhood embedding Self embedding
| | |
h% = o((W* - AGG({RX™1, Vu € N(v)}), B¥hE™1))

N

Generalized aggregation Inductive Representation Learning on Large Graphs, NeurlPS2017

(Figure credit) Slide snipping from “Hamiltion & Tang, AAAI 2019 Tutorial on Graph Representation Learning” 35



SGCN

= Motivation: Can we train GCN more efficiently?

Simplifying Graph Convolutional Networks, ICML2019

= |dea: Remove unnecessary complexity and redundant computation (non-linearity and weight matrices)

Input Graph

Feature Propagation
H®) « sHE-D \ / H

Llnear Transformation
"H® g ek

sild e A

Nonlinearity
(k)  ReLU(H®)

~

Predictions

Yacn = SoftmaX(SH(K—l)@(K))

.
SGC \
K-step Feature Propagation
X « 8KX
. J

Predictions

—

Logistic Regression

[ Class +1: . Class -1: . Feature Vector: [

Feature Value:

-1

] YSGC = softmax (X@)
0 +1

36



SGCN
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Simplifying Graph Convolutional Networks, ICML2019
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Reddit
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b C—
_________________ DGI
FastGCN
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GRAPH ATTENTION NETWORKS (GAT)

= |dea: We assign higher weights to more important nodes

S0t J0)
JO)=y

f6)=0 y

f)=ay

Or, JEN Q) Or,
th,,l Aggregate info f_rom Aggregate info from 4’ hy,
QWCL ays n:'ghborhT.OddV'a neighborhood via the “QHC)’L iy
| the normalize learned attention ~ '
O, h"“() Laplacian matrix Ohs, _ . :;h:‘w()
an("OR s« ah,

GCN GAT

1 exp (LeakyReLU (&7 [Whi|| W] ) )

%ij = Qyj = —

Vdeg(vy) deg(v)) S ke, exp (LeakyReLU (&7 [Wiii||Wiiy))
Non-parametric weights Parametric weights

(Figure credit) https://www.programmersought.com/article/55025669012/

Graph Attention Networks, ICLR201838



BACKGROUND: MUTUAL INFORMATION (Mil)

= Measures the amount of information that two variables share

= If X and Y are independent, then Pyy = PyPy = in this case, Ml =0

Pyxy ]
Py Py

= Dy (Pxy||PxPy)

I(X;Y) = Ep,, [log

= High MI? = One variable is always indicative of the other variable

= Recently, scalable estimation of mutual information was made both possible and practical through Mutual
Information Neural Estimation (MINE)

MINE: Mutual Information Neural Estimation, ICML2018
39



BACKGROUND: DEEP INFOMAX

= Unsupervised representation learning method for image data

= |dea: Maximize mutual information (MI) between local patches and the global representation of an image

M x M features M x M Scores
“Rea|”
W J Local feature (+)
........... »
— M Discriminator tries to discriminate
Global feature
between “Real” and “Fake”
“Fake”
. —
Local feature (-) M
M

M x M features drawn from another image

Learning deep representations by mutual information estimation and maximization, ICLR2019
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Deep Graph Infomax, ICLR2019

DEEP GRAPH INFOMAX

, D(hi,5) = o (E{wg)

Apply GCN |

& o D ~n~> + Readout function

hAAAAAAAAAAAASD

—_——y— = - —_ -

| : R < N
I Local ! 1 N
Corrupt C R it e L __. M"‘"’» R(H)=a< E hi>

information

—_— e e e e — — — — — — — — — — —

Maximizes the mutual information between the local patches (h;)

and the graph-level global representation (s)
4



HIGH-ORDER DEEP GRAPH INFOMAX

= |dea: High-order Mutual Information

- We should not only consider the extrinsic supervision signal, i.e., s < h, but also intrinsic signal, i.e., f < h

I(X;Y) = H(X) + H(Y) — H(X, Y) DGI

2

I(X1;X2;X3) = H(X1) + H(X2) + H(X3)
— H(X1,X2) — H(X1,X3) — H(X2, X3)
+ H(X1, X2, X3)

=H(X1) + H(X2) — H(X1,X2)
+H(X1) + H(X3) — H(X1,X3)

3 —H(X1) — H(X2, X3) + H(X1, X2, X3)
max I(h,;s;f,) = maxI(h,;s) + max I(h,;f,) — maxI(h,;s,f,) =I(X1;X2) +1(X13 X3) — 1(X1; X2, X3)
‘ Difference-based estimation (Mukherjee et al, 2020)

L = Agl(hy;s) + Afl(hp; £,) + A]I(hn;s, fn)

HDMI: High-order Deep Multiplex Infomax, WWW2021
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OUTLINE

= Heterogeneous Network Embedding



HETEROGENEOUS NETWORK (HETNET)

= So far, we have look at graphs with a single type of node and a single type of edges

= However, in reality a lot of graphs have multiple types of nodes and multiple types of edges

= Such networks are called “heterogeneous network”

Q Movie
Studio DUNE

Num. node types > 1
Num. edge types > 1

iad Director
Venue Paper Author Actor Movie

DBLP Bibliographic Network The IMDb Movie Network

How do we embed nodes in a heterogeneous network?



METAPATH2VEC: SCALABLE REPRESENTATION LEARNING FOR
HETEROGENEOUS NETWORKS

= Motivation: Deepwalk assumes that each node has a single type — Extend Deepwalk to HetNet!

Author
(A)

Meta-paths

Paper

(P)

APPA

APVPA

Venue @

V)
T o —B-a-B-@-8-ad-
:1.%92;:3[) Meta-path guided .
random walk @) g Sk_lp-gram model
?éEEwE (APA) (like Deepwalk)
Maximize: Pr([Z | &)
Deepwalk . = dih
: = O
argmglxz Z logp(clv;0) Pr( = | d )
VeV ceN(v) >
metapath2vec

argmgxz Z Z log p(ct|v; 0)

veV teTy c; €Ny (v)

metapath2vec: Scalable Representation Learning for Heterogeneous Networks, KDD2017
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HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning, CIKM2019

HIN2VEC

= Motivation: Do we need predefined metapaths?

= |dea: Learn latent vectors of both nodes and the targeted relationships

Relation exists between x and y

o ( ) P(r|x,y), if L(x,y,r) =1
xX,Y,r) =
xy,r i Y 1 - P(r|x,y), ifL(x,y,r) =0

log Oy, y,r (x,y,r) =L(x,y,r) log P(r|x,y) + [1 — L(x,y,r)] log[1 — P(r|x,y)]

. . . ) = ) > ) >
R = {P-P, P-A, A-P, P-P-P, P-P-A, P-A-P, A-P-P, A-P-A} P(rlx,y) = sigmoid (Z WX © Wyj © for(Wgr ))

WIxOWly @ Wir

) Wy x
x |V
W, >
N
Wy
W —_—
v IVIE ) O xlogO = Zx,y,rED log Ox,y,r(x’y’r)
f01(WR)
. |R|/Wgr »| softmax [»
- c(Wix OWYy © Wrr)




MULTI-LAYER (MULTIPLEX) NETWORK

= A type of heterogeneous network
« Asingle node type, multiple edge types

= Example 1: Social network

 Relationship between users Num. node types = 1

= Example 2: E-commerce Num. edge types > 1 >

 Relationship between items

= Example 3: Publication network
- Relationship between papers (Citation, share authors)

- Relationship between authors (Co-author, co-citation)

= Example 4: Movie database
« Relationship between movies

« Common director, common actor

= Example 5: Transportation network in a city
 Relation between locations in a city

* Bus, train, car, taxi

View 3

View 1 View 2
% \ \ @ %
\ \, \\

Node: User

Gy
Family

G

Schoolmate

G

Colleague

Social Network
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An Attention-based Collaboration Framework for Multi-View Network Representation Learning, CIKM2017

AN ATTENTION-BASED COLLABORATION FRAMEWORK FOR MULTI-VIEW
NETWORK REPRESENTATION LEARNING

= |dea: Promote the collaboration of different views and let them vote for the robust representations.

2.

(i’j)EEk
pi(wjlo:) o< exp(x) - 1),
pr(vjlvi) = w

[/

i) log pr (vjs).

(k) ; (k)
ij /4

Regularization

IVI K
i=1 k=1
_C
o oPmox)
Zk’:l exp(zys “X; )

Multi-view View-specific Node Voting Weights J
Network Representations of Views Labeled Dat
' . |
& ...................................................... ~00000 / -\ 2@
N /
............................................ Robust Nodd¢
.k. (XTI XX é

Representatiohs

Qe0ee

Ocollab = Z Ok + 1R,
k=1




R-GCN: RELATIONAL GCN

= Knowledge graph is a type of multiplex network

ST

< ¥
,Le(\ /o

R

educated_at

[ Mikhail Baryshnikov ] =[ Vaganova Academy ]

« Nodes are entities, the edges are relations labeled with their types m

— rel_1(

_ rel_1(out) —

— rel_N(n) —

_ rel_N(out) —

—rel 1

. J

— self-loop —

_ self-loop

Ce

[_ Vilcek prize ]

1
GCN h§l+1) = 0'( W(l)h(l) + W(l)h(l)>
JEN; i

1
Roon 0 <o 350 LwOn? s winp

C.
reR jeENT 0T

Modeling Relational Data with Graph Convolutional Networks, ESWC2018
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HAN: HETEROGENEOUS GRAPH ATTENTION NETWORK

= ldea: Apply graph attention networks to each network and then aggregate through attention

A Graph Attention
Network

Graph Attention
Network

\

[

/
-lf----(--

o _ (] /
Z; “’(Z o;j - hj

JENT i /| Attention

(b) Semantic-level Aggregating ‘. e'@ ."
o o exp(o(ag - [hy][h’]))
a;; = softmaxj(eij) = T RN )2
ZkENIfD eXP(O'(acD . [hl“hk])) 7 Zﬁ 7
- Cp " Cp
p=1

0]

Heterogeneous Graph Attention Network, WWW2019
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Unsupervised Attributed Multiplex Network Embedding, AAAI2020

DMGI: UNSUPERVISED ATTRIBUTED MULTIPLEX NETWORK EMBEDDING

= ldea: Adopt infomax principal to multiplex network

Original Network X Corrupt X Corrupted Network

s 3
DGI

Readout
D — . D

Rel. v /
Real?

Type 1
(1)
hl

Schoolmate

or Fake?

D (hg"‘),s(f“)> — O'(h,l(;T)TM(T)S(T))

Score matrix w.r.t.
relation r
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Unsupervised Attributed Multiplex Network Embedding, AAAI2020

DMGI: UNSUPERVISED ATTRIBUTED MULTIPLEX NETWORK EMBEDDING

Original Network X Corrupt X Corrupted Network

4
5
Schoolmate / o
1t

Rel. v /

Type 1
(1)
hl
h(z)
Rel. 1

Family

Original Network
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Unsupervised Attributed Multiplex Network Embedding, AAAI2020

DMGI: UNSUPERVISED ATTRIBUTED MULTIPLEX NETWORK EMBEDDING

Original Network X Corrupt X Corrupted Network

=

4
5
Schoolmate / o
]1:

. 2 D é"// I D g
T Rel. v /Q Attenti
ention
: . ! hY — > techni c —M Y
Which relation is 1 pul echnique S < 1
more important for > éqg «h, = Z ag"")h“’) > g"g <
each node? @ 1 |78 rer 2 _I g
Rel. 1 /
‘l’ R B D ; 3

Family

Corrupt X

Original Network X Corrupted Network
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DMGI: UNSUPERVISED ATTRIBUTED MULTIPLEX NETWORK EMBEDDING

Unsupervised Attributed Multiplex Network Embedding, AAAI2020

Original Network X Corrupt X Corrupted Network
4 3 s 4 3
5 5
Readout
Schoolmate o e
1 G 2 D é’/ D G
N Nl
Rel. . /Q ~---Consensus Regularization----, Q
pel oy | h z h, | m %
hy E[1 " 1 18 . sy
cm | ! Agree Disagree I B o
¢ innchomnnd emmmd BmbEh
— i S
S g P B2 H B0
S | ¥ : < h1
Real [===—=—=======-- Fake
Famil M
y Readout s() 5 1_/5
2
- N C t X )
Original Network X orrup X Corrupted Network



TASK-GUIDED METHODS

= |nstead of learning general node embeddings, what about we focus on a specific task?

= Example: Author Identification

 Predict the true authors of an anonymized paper given

 Paper abstract Author Paper Venue

. Venue (e.g., KDD, ICDM) (A) (V)
« References
= Can we predict the true authors? & gﬁ%%‘g,,
%%KDD
learning model
anonymous € 1EEE
-] Gty T ICDM

potentlal authors .

S g

/

]

| abstract
|

\

_-—_/ ______

historical data
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Task-guided and path-augmented heterogeneous network embedding for author identification, WSDM2017

HETNETE

= Step 1: Combine keywords, venue and references = Step 2: Perform metapath2vec using embeddings

related to a paper to obtain the paper embedding

Author scores { 00000000 OO o O W
De}use
Paper embedding {. 0 000 ‘

elghte CM

\oooooo\ \oooooo]

Node type
embedding

Mean pooling

Node embedding

r----------

Supervised part:
Task-specific part

learned in step 1

_|_

r--------:—--

Maximize: Pr(
Pr(

Unsupervised part:
metapath2vec

56



TAPEM

= |dea: Let’s generate pair embeddings

=] Bob’s (=) Alice’s (| Target Paper
=) Paper \=J Paper (=) written by Bob
Text mining
d% Whose paper?
Bob
Sequential mining Anomaly detection

Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

(Paper-Bob) (Paper-Alice)
Pair embedding 1“3 Pair embedding

Text mining

Invalid pair Bob

8

Sequential mining

ice

i
5D

Anomaly detection

%

«—— Associated research topic
<—— Pair validity information

whether

is written by
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Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

TAPEM

Maximize

Pair Validity : @ < S @
Classifier — Binary cross

T (0] entropy

Paper-Author 0 M Context Path
Pair Embedder ) T Embedder

N S 1
I [ee————eceececcceccc—cecce e e === n
—h: M;“P : o Attention Layer | :J
' A R T
@ @ E] t RNN | [RNN | [ RNN | [RNN
: .’ v Jeferr]eer2]]e+3]
1 1 1
: IR S I S S S
] Embedding Layer Ie:—:—>| Embedding Layer | |
i $------$ ----------- lShaledl ---------- f ------- T ------- T -t
:”;',‘. :.“’.‘- S E] -> — -> . - -
AR - X = &
Sample - —>=:@ -> -)[E]—):' -
Random Walk o Ko
Pl Al P2 A2




OUTLINE

= Training GNN
« Self-supervised learning
« Going deeper with GNN
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OUTLINE

= Training GNN
« Self-supervised learning
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WHAT IS SELF-SUPERVISED LEARNING?

= A form of unsupervised learning where the data provides the supervision
= |[n general, withhold some part of the data, and task the network with predicting it

= An example of pretext task: Relative positioning
« Train network to predict relative position of two regions in the same image

(Figure credit) Unsupervised visual representation learning by context prediction, ICCV2015



WHAT IS SELF-SUPERVISED LEARNING?

= Pretext task: Jigsaw puzzle . = Pretext task : Rotation
‘ « Which one has the correct rotation?

: g ¢ |
Shuffled Solved |
= Pretext task : Colorlzatlon |
: .“’\";.' e - o:» B 4../': ‘ ’ .- - : W\\ s :

. = . : n H

InpUt OUtPUt |npUt OUtPUt (Figure credit) Self-Supervised Learning, Andrew Zisserman




Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020

EXAMPLES OF PRETEXT TASKS ON GRAPHS

Pretext Tasks >

Attribute Mask

Attribute

Pairwise Attribute Similarity

Node Property >
Local
g_ Edge Mask >
>
[l
g Pairwise Distance
prs Global
g Distance to Clusters>
-
@)
Y=
= >

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021



CONTEXT PREDICTION

= Pretext task: Context prediction

Input graph

(a) Context Prediction

C\/©)‘\HD7

o

@ = Center node
= Context anchor nodes

K-hop neighborhood

Nodes that are shared between the
neighborhood and the context graph

Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain
GIN 67.0 74.2 +7.2 64.8 + 1.0 742+ 1.5 | +94
GCN 68.9 72.2 +3.4 63.2+1.0 709 £ 1.7 | +7.7
GraphSAGE 68.3 70.3 +2.0 65.7+1.2 685+ 15 | +2.8
GAT 66.8 60.3 -6.5 68.2 + 1.1 67.8+36 | -04

Strategies for Pre-training Graph Neural Networks, ICLR2020
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CONTRASTIVE LEARNING

Generative / Predictive

Contrastive

Data
Zo

Data
Ty

SHgFo0

Loss measured in the output space

Examples: Colorization, Auto-Encoders

Classification
(similar or not)

Loss measured in the representation space
Examples: TCN, CPC, Deep-InfoMax

= Given: X = {x, x%, x{,..,xy_1}; Similarity function s(-) (e.g., cosine similarity)

= Goal: S(f(x),f(x+)) > s(f(x), f(x7))

= Contrastive/InfoNCE Loss

exp (s(f(x), (1))

Ly = —Ey |log

(Figure credit) https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

exp (s(f (), £ ) + 20t exp (s (00, £ (7))
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Contrastive Multi-View Representation Learning on Graphs, ICML2020

CONTRASTIVE MULTI-VIEW REPRESENTATION LEARNING ON GRAPHS

= |dea: Contrast encodings from first-order neighbors and a general graph diffusion
- Maximize MI between node representations of one view and graph representation of another view and vice versa

Local view [
I - N\ N C N N
\/ | o5 6oog

= _— GNN | | MLP a—@ MLP Pool
L =>] —> ()ﬂf():{>|\ ) - <:lf()<—z«
\\ . A 9o\ p — o\

(0)0) (0)0) m
. : _— (00 ele]

o . Jo . -

a:jﬂ Salflple Shared Contrast . Shared -

: : 2 ; : :
S ' e N N e N ~N
\ / I T B 0 (elelele) :

o L @ \ GNN | | MLP o : MLP | | Pool
L SN 9o(-) | | fu() |~ C—N fo) | | Do
\\ i (6600 (0000
«
N l J N J J N

Global view

1 1 gl I -

Sl =N M (h‘?‘,h ) MI (n,m)]

Structural efgz)fw |G| gezg lg] ; [ il ) + ir''g

Augmentation




GCC: GRAPH CONTRASTIVE CODING FOR GRAPH NEURAL NETWORK PRE-
TRAINING

= |dea: Subgraph instance discrimination in and across networks

q
Graph

Encoder -
fq

E exp (g k;/T
L - _ IOg = P (q :::/ )
Y Contrastive Zi:() exXp (q ki/’[)
/ _ Slml{arlty—> Loss
h xko
o = Query instance x4

Graph x4

~
Srmm—-—

= Key instances {x*o, x’1, xk2}
. Graph x*1

Graph
- Enc;der ' = Embedding
k

ok - g (embedding of x%)
oo . i, q=f(x9

+ ko, ky, k; (embedding of {x¥o, x*1, x¥2))
- e, ky = f(xk)

~
Semm—=—

Graph x*2

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training, KDD2020
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GPT-GNN: Generative Pre-Training of Graph Neural Networks, KDD 2020

GPT-GNN

= Idea: Model the graph distribution p(G; 8) by learning to reconstruct the ™

input graph
- Factorize the graph likelihood: p(G; @) = p(X,E; 8) = p(X; 8)p(E; 0)
- Attribute generation p(X; 8) / Edge generation p(E; 6)
« Autoregressive generative process of an attributed graph
V|

Z log po(Xi, E; | X<i, E<;)
i=1

Test MRR
o
Sy
N

log po(X,E) =

1) Given the observed edges, generate node attributes
2) Given the observed edges and generated node
attributes, generate the remaining edges

i=1
V]

i=1

2
[

_________ - e Pre-Train Task
—e— GPT-GNN

T “~ EdgePred

> ~#- Graph InfoMax
+ >

7 --#- GraphSAGE

—4-- No-Pretrain

o(EilX<i,E<j)

20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Labelled Data during Fine-Tuning

This ignores the dependency
between attributes (X) and edges (E)

= Z ZOPO(Xi,Ei,ﬂo | Ei o0, X<i» E<i) - po(Ei,0 | X<i, E<i)

[EO [pQ(Xl | Ei,07X<i’E<i)'p9(Ei,—lO | Ei,Oaxﬁi’E<i)]

Now we can consider the dependency between

edges and attributes 1) generate attributes

2) generate edges
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GCCVS. GPT-GNN
: TWO DIFFERENT SETTINGS

subgraph instance discrimination

Tutorial on Graph Representation Learning---Embedding, GNNs, and Pre-Training at ECML/PKDD 2020

1
GCC
2ty
Facebook IMDB DBLP

Pre-Training

node graph
classification classification
o 2ty
GCC GCC
iy ity
US-Airport Reddit
Fine-Tuning

- To pre-train from some graphs
- To fine-tune for unseen tasks on unseen graphs

(" attribute edge
generation generation
gty
GPT-GNN

attribute and edge masked
input graph

~N

Pre-Training

GPT-GNN
( node link i ™
classification prediction recommendation
sty
GPT-GNN GPT-GNN GPT-GNN
o o
the same input graph or graphs of the same domain
- J

Fine-Tuning

To pre-train from one graph
To fine-tune for unseen tasks on the same graph or
graphs of the same domain
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OUTLINE

= Training GNN

« Going deeper with GNN
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WHY DEEP GNNS?

= Lager receptive field (more global view)

= Larger model capacity

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021
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WHAT HAPPENS WHEN GCN GOES DEEP?

The performance drops as we go deeper

Accuracy

Citeseer

0.90
0.65) k4
\ ‘J
. .’
0.60 e---= Train
Yl e—— Train (Residual)
055} 77T Test
= Test (Residual)
00 ——"3"735 6 7 8 9 10

Number of layers

Accuracy

0.95}

0.90¢

0.85}

Accuracy

*---= Train | 078l - --* Train "
»——= Train (Residual) »~——= Train (Residual) El
>---= Test ! »---= Test K

0.76} b

= Test (Residual) = Test (Residual)

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of layers Number of layers

Semi-Supervised Classification with Graph Convolutional Networks, ICLR2017
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WHAT IS GOING ON?

= Challenge: Over-smoothing

= Repeated graph convolutions eventually make node embeddings indistinguishable

03

0.2

0.1

0.0

-0.1

-0.2

-0.3

Figure 2: Vertex embeddings of Zachary’s karate club network with GCNs with 1,2,3.4,5 layers.

0.02
[ ]
0.35 0.20 0.06
[ ] L4 [ ]
0.30 ° 0.05 0.00 L] ,‘ °
o o [0 o e ° ~ -
° ° ° 0.25 4 [ ] 0.04 PY
e e ® . . 0.03 ®e o -0.02
e ® o 0.20 ° ° 0.10 ) ° P °
> ° ® L4 0.02 ... L
0.15 [ ] L4 -0.04
’ 0.05 PP o 0.01 o

0.10 ° °

°

L ¢ 000 L4 0.06
0.05 L 0.00 o
° [ ] -0.01
0.00 T r . : ; ,
-0.3 -0.2 -0.1 0.0 0.1 0.2 =020 =015 =010 =005 000 005 010 015 =0.175 -0.150 -0.125 -0.100 -0.075 -0.050 -0.025 0.000 -0.175 -0.150 -0.125 -0.100 -0.075 =-0.050 -0.025 -0.03 -0.02 -0.01 0.00 0.01 0.02
«
(a) 1-layer (b) 2-layer (c) 3-layer (d) 4-layer (e) 5-layer

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI2018



WHY OVER-SMOOTHING?

= Multiple propagation makes representation inseparable!

Theorem. In a connected graph, given a propagation matrix P and node features x € R, we have

lim P*x o< uy,

k—o0

where 14 is the eigenvector of P corresponds to its largest eigenvalue.

(1) When P = DlAullsl
(2) When P = D2AD2u1|sD 21

Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning, AAAI2018

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021 74



PAIRNORM

= |dea: Normalization layer for GNNs

graph con\i{

, X L X X¢ b X
center rescale

» N », ‘
Lol >

« The total pairwise squared distances (TPSD) remains a constant across layers

TPSD(X) = > % -%[3= > (&i—%)"(

i,j€[n] i,j€[n]
= ) (&% +X%] %; — 28] %)
i,j€[n]
=2 ) X% -2 ) XX
@E[n] ,]E[n]
=2n ) ||%[l5 — 217 XX"1
1€[n]
=2n ) [1%l3 — 2(117 X3
1€[n|

— (] Zux@nru—zleb)

~

X5

— %) Stepl: Compute centered representation

(This does not affect TPSD)
%6 =%, — 1Y%,
||1 > i 1XZ||2 -0
TPSD(X) = TPSD(X°®) = 2n||X¢||%

Step2: Scale the centered representation

BN zz e

X
TPSD(X) = 2n||X[% =2n) ||s-

= s/ ————
I3 = 2n e DK = 2057
i e 2alXR G

[ IX<[1%
i 2
PairNorm: Tackling Oversmoothing in GNNs, ICLR2020
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DROPEDGE

Dropout

O () Q)
NANAN
N7 XL

O
, Yl N
SRR A
Ve

RS

(a) Standard Neural Network.

.\v.
l@A\.}.
SO\

= |dea: Randomly remove a certain number of edges from the input graph at each training epoch

~
\

- T~

/7 N

/ \

! \

| |
I

\ /

\

~ /

E\poch 1

- T~

/7 ~

p \

{ \

‘ l
!

\ /

N y

\ S~

Epoch 2

s T~

7 N

/ \

/ \

l ‘
I

\\ 7

\\ ,/

Epoch

Table 1: Testing accuracy (%) comparisons on different backbones w and w/o DropEdge.

2 layers 8 layers 32 layers

Dataset Backbone Orignal DropEdge | Orignal DropEdge | Orignal DropEdge
GCN 86.10 86.50 78.70 85.80 71.60 74.60

ResGCN - - 85.40 86.90 85.10 86.80

Cora JKNet - - 86.70 87.80 87.10 87.60
IncepGCN - - 86.70 88.20 87.40 87.70
GraphSAGE 87.80 88.10 84.30 87.10 31.90 32.20

GCN 75.90 78.70 74.60 77.20 59.20 61.40

ResGCN - - 77.80 78.80 74.40 77.90

Citeseer JKNet - - 79.20 80.20 71.70 80.00
IncepGCN - - 79.60 80.50 72.60 80.30
GraphSAGE 78.40 80.00 74.10 77.10 37.00 53.60

GCN 90.20 91.20 90.10 90.90 84.60 86.20

ResGCN - - 89.60 90.50 90.20 91.10

Pubmed JKNet - - 90.60 91.20 89.20 91.30
IncepGCN - - 90.20 91.50 OoOM 90.50
GraphSAGE 90.10 90.70 90.20 91.70 41.30 47.90

GCN 96.11 96.13 96.17 96.48 45.55 50.51

ResGCN - - 96.37 96.46 93.93 94.27

Reddit  JKNet - - 96.82 97.02 OOM OOM
IncepGCN - - 96.43 96.87 OOM OOM
GraphSAGE 96.22 96.28 96.38 96.42 96.43 96.47

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification, ICLR2020
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l N ResNet (He et al., 2016)

GCN I (£+1)—0(((1 u PH(@-’-(MH(O)) (( —B,)I +BgW(£))) x

weight layer

Y

Add residual connection Identity mapping F(x) lrelu

X

Maintain a portion of information The weights are shown to have small weight layer

e identity
from the initial input norms

Method Cora Citeseer Pubmed

GCN 81.5 71.1 79.0
GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1
JKNet 81.1 (4) 69.8 (16) 78.1 (32)
JKNet(Drop) 83.3 (4) 72.6 (16) 79.2 (32)
Incep(Drop) 83.5 (64) 72.7 (4) 79.5 4)

GCNII 855+ 0.5(64) 73.4 + 0.6 (32) 80.2 £0.4 (16) Simple and Deep Graph Convolutional Networks, ICML2020
GCNII* 85.3+0.2(64) 73.2+0.8(32) 80.3 +0.4(16) 77




APPNP

= ldea: Incorporate the personalize page rank to capture the better locality of the target node
« Introduce the teleport probability o

« Staying close to the root node to avoid oversmoothing, and leveraging the information from a large neighborhood

- Separate the neural network from the propagation scheme

z") = H = fo(X),

A
~

ZU+) = (1 - a)AZ®) + aH,
Z5) = softmax ((1 — oz)fiZ(K_l) + aH) :

L
D

J

f Neural
0 network

3

h; = fo(x;) <
D ‘ he
L; > h;
o Prediction 0D  Personalized PageRank D

> 2

Predict then Propagate: Graph Neural Networks meet Personalized Pagerank, ICLR2019
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DEEP ADAPTIVE GRAPH NEURAL NETWORK (DAGNN)

= |dea: Decouple transformation and propagation

®|H€=Z€Z’5=1,2,-'-,k eRnXCI @ IH=StaCk(Z,H1,"‘,Hk) e RrX(k+1)xe I
Transformation E Propagation ®© 060 0 0 0 0 0 0000
' 00 L QO OO0 0O L QO OO0
O 5 O
MLP :
—> L] » e 6 o o 0o o
¢ 5 hl? hz?
S o
@ Adaptive adjustment e o oossce
_ X
|z = MLP (X) e R™| % 9

@ S = o (Hs) e R (k+1)x1 @ IXout = softmax (squeeze (EH)) € Rnxcl
S = reshape (§) € R™>1X(k+1)

Towards Deeper Graph Neural Networks, KDD2020
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OUTLINE

= Applications of Graph Machine Learning
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APPLICATIONS OF GRAPH MACHINE LEARNING:
COMPUTER VISION

= Scene graph
- Objects in a scene usually have relationships with each other

Visual Question ]

Answering
RO \|
: ! N
Scene Graph iln front of\ g : Image
! o
Generation ! bg ! Captioning
I . wear O I
kt_l? __________ ! ~\
Visual Question
Generation

Can capture
global information

Input Detected Objects

Vision-and-Language Tasks

https://xiaolonw.github.io/gré@hnn/



APPLICATIONS OF GRAPH MACHINE LEARNING:
NATURAL LANGUAGE PROCESSING

= Document classification, Sentiment analysis

. [ text -
degree document text — doc_1 ] ¢ T
information doc_2 information label 1
node\ network t/ vord network doc_3 network < — label 2
T tex
vord doc word label 3
edge/ wor —4
\ ’ c%ssification :
embed ng classification classification
(a) word-word network (b) word-document network (c) word-label network
Heterogeneous text network
= Semantic role labeling
N
repairer - TS £ S .
epairer_ _ - < ’ \ entity
= ~ ’ \ .
No 7 (epaired
creator \ creation \
1

Sequa |makes| and |repairs | jet engines

(Figure credit): https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf
(Figure credit): https://shikhar-vashishth.github.io/assets/pdf/emnlp19_tutorial.pdf



https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/fp292-Tang.pdf

APPLICATIONS OF GRAPH MACHINE LEARNING:

BIO-MEDICAL DOMAIN

Classifying the
function of :
proteins in the ...
interactome!

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel

protein—protein interactions. Nature.

Node Classification

Drugs Diseases

. A

Predicting which ¢

diseases a new %

7
molecule might %
treat! g ?

(&
£
(J
“;}
— “Treats"relationship

Unknown drug-disease relationship

Link Prediction

QH R e
Identifying @
disease
proteins in the
interactome!

" © @ Multiple sclerosis (MS)
'@ @ Peroxisomal disorders (PD)
%" @ Rheumatoid arthritis (RA)

Image from: Menche et al. 2015. Uncovering disease-disease relationships
through the incomplete interactome. Science.

Community Detection
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CONCLUSION

= How to model different types of graphs?
« Homogeneous Network Embedding
« Multi-aspect Network Embedding
- Attributed Network Embedding
- Heterogeneous Network Embedding

= How to effectively training GNN?
« Self-supervised learning for GNN
« Going deep with GNN
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THANK YOU

= Contact: cv.park@kaist.ac.kr

= Lab homepage: http://dsail.kaist.ac.kr
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GUMBEL-SOFTMAX

= A simple way to draw a one-hot sample z from the categorical distribution

= Given: A K-dimensional categorical distribution with class probability m{, 5, ..., Tg

®

®

Non-dlffjrentlable Gumbel noise drawn  9i = _10g(_ log(u;))
from Gumbel(0,1) uj ~ Uniform(0,1)
Gumbel- _ . _
o Z=one-hot (argmax; [log 7; + gi])

‘ Differelntiable

Temperature parameter Continuous
Gumbel- z; = softmax [log 7; + g;] :
softmax As T — 0, samples from the relaxation of

_ €Xp ((log T + gi) [T) Gumbel-Softmax distribution discrete random
Zle exp ((log ;i + gj) /TY become one-hot variable

fori=1,...,K

Categorical reparameterization with gumbel-softmax, ICLR2017
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GRAPH TRANSFORMER NETWORKS

= Motivation: Do we need predefined metapaths?

= l[dea: Automatically learn useful meta-paths for given data and tasks

o . . .
softmax ——o
w 1 — —_— . .
¢ —
E E y f. ° "
L] . ° L]
1x1 Conv

= 1

3

o

Graph Transformer Networks, NeurlPS2019
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OTHER EXAMPLES OF MULTIPLEX NETWORK

Frequencies based composition
JSo<Sf<fi
Si<f<f
L<f<fs
s <f<fe
Ji<f<Ss
<f</fs

Share
symptom

Similarity matrices Functional layers

Frequency based composition of brain

\
overlapping link

Disease-Disease network

Multiplex biological networks
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Camel: Content-Aware and Meta-path Augmented Metric Learning for Author Identification, WWW 2018

CAMEL

= Model the paper abstract using a GRU-based encoder

= Perform metapath2vec

Supervised part: Unsupervised part:
Task-specific part metapath2vec
: Organization Author Paper Venue P ] ! v ":
: P s 'i\l el :
O Al/ 1 \V E : P1 PZ\ P
P, 1, metapath | 4 % Liwi
o 2 walk : \fl ° p :
2\\\\\\/\ P \/2 = g P4 54//////1 ~£A4VVIL E
a ()3*-‘_¢\ ‘///,_P4 \/ - . X4 A4 x\\\\\\E\A
: : : 3 S ' : Maximize: Pr( P,| A, )
dist(P4, A3) > dist(P1, 44): P< o g . 21 A4
. - E (APVPA) (APA) .
direct -
triple relations !
- (Pll Alr A3)|(P2r A3r A2I) (P3I A2I A4) e i_i_’ -EMetric _— L]oint
: + -+ -+ - i
. Metric learning to model direct : 3 Skip-gram to-mod(_el indirect
relationship relationship

. 93
S .
------------------------------ ns?® ®*sypssssssEEEEEEEEEEEEEEEnnnnnn?®



Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

TAPEM

= 1) Context Path-aware Pair Embedder
- Step 1: Pair Embedder (Embedding Paper—Author Pair)

p, = PaperEncoder (Oy)

/ content
encoder f

Paper-Author & Moses
Pair Embedder ) tokenizer

<[

Comb( )
Embedding Layer

Sample
Random Walk




TAPEM

= 1) Context Path-aware Pair Embedder

- Step 2: Context Path Embedder (Embedding Context Path)

Sample
Random Walk

|f([% 3G .. )| Context Path

Embedder

Attention Layer

!

!

RNN
t+1

RNN
t+2

1\

1

Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

What is a context path?

A sequence of nodes between
a target node pair

Target Paper Target lllkuthor
ot Vo
= W= DN
— Ll — —
O yeid dh = '....-0' — dh
Q‘u:n.o . — . — 0‘...0
& |m— e — — ~ .
=|= - |=— —|= > ...
+=- = TeTE _Z“
NI SRR BN MR
see — — — - Y
= Y t.;.‘: & = “A:
La
Context Window

O .+ Paper-Author Pair |:| Context Path

Cue .

Why do we consider the context path?

We can infer the research topic related to
the pair (v, u) by examining the path
between paper v and author u
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TAPEM

= 1) Context Path-aware Pair Embedder
- Step 3: Injecting Context Information into Pairs

Maximize

Embedder

Paper-Author , f( E] R -. )| Context Path
Pair Embedder T

! !

RNN RNN
t+1 t+2

Comb() A 0

Embedding Layer

Sample e =D @ -> -)@ >-

Random Walk

Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

Objective (Pair embedding)
Predict pair using its context path

P(E,&)|E ~ &> B~ 1)
Ski*ram
P(E]1&), P(E )
P(&IE)), P(&

iy -
S

Benefit

Pair embedding ® Embeddings of frequent context paths
— Pair embedding encodes its related research topic
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Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

TAPEM

= 2) Pair Validity Classifier (Validity of Pair Embedding)

Objective
Pair Validity Uhjecuve
@ Binary cross

Classifier 1

- Classify whether the pair is valid or not

entropy

Lpv(v,u) = Yo,u0((g(v, 1)) + (1= yo,u)(1 - o (m(g(v, u))))

Paper-Author
air Embedder

0, paper v is not written by author u

1, paper v is written by author u
Yo,u =

Benefit
- Enables to identify relatively less active authors

- The training of the embedding is no longer solely based
on the frequency (Limitation of Skip-Gram)

- Two nodes will be embedded close to each other if
1. Related to a similar research topic
2. The pair itself is valid
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Task-guided Pair Embedding in Heterogeneous Network, CIKM2019

TAPEM: JOINT OBJECTIVE

PINPIDIED)

PeS(P)weWp VEW yew|[C,—1:Cp,+7]

Context Path-aware Pair Validity
Pair Embedder Classifier

Letx (v, u)|+ LPV(U’ u)

[r—

= S(P): a set of meta-path scheme
= W,: a set of random walks guided by meta-path p
= 7: window size

»- position of paper v in walk w



Disentangled Graph Convolutional Networks, ICML2019

DISENGCN

= Challenge: How to identify the subset of neighbors that are actually connected by node u due to factor k?

Feed back to improve neighborhood routing.

S ———

- = :\ Wl /I) m ;\con
\
channel 1

OO OO 0 O

e s o jon
/7 oom 7 cqnvolut

conc nate

} channel 3 —
| v Layer
Layer Input : Extract features specific to each factor. Output

Yo = [c1,Co,. ..
o(W]x; + byg) (1-1)

exp(zv,chg)/T)

Z; . = & , c(t) . Zuy,k + Zv:(u,v)EG’ Dy = Zouk P t)k: — o
? - _ ) v, K t )
/r HU(Wk X; + by) HQ Nz + > o wn)eG pz(;t,kl) Zo 1|2 Sr—qexp(zy i 1 €y /T)
GCN 1‘

din X dout
Wk: e R K Probability that factor k is the reason why node u reaches neighbor v




Information Type

Attribute

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021

Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020

EXAMPLES OF PRETEXT TASKS ON GRAPHS

Attribute Mask

Pairwise Attribute Similarity

Pretext Tasks
Node Property >
Local
Edge Mask >
Pairwise Distance >
Global
Distance to Clusters>

>
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Pretext Tasks >

Node Property

LOCAL STRUCTURE BASED PRETEXT TASK

Edge Mask

>
>

= Node property
« Goal: To predict the property for each node in the graph such as their
degree, local node importance, and local clustering coefficient.

Information Type

Predicteld degree of node v;
Eself(gl, A, X,DU) = D—U Z (fel(g)'vi — d'b)2

vi€Du Degree of node v;

= Edge mask
- Goal: To predict whether or not there exists a link between a given node pair

Lse17(0',A,X,Dy) = Cross-entropy loss
1
S £(Fullfo (G = Jo (@), 1) +i57 ST (fullfer (G)e — for (), 1), 0)

|Me| (vi,v5)EMe e| (vi,vj)eﬂe

Connected edges Not connected edges

Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020101



Pretext Tasks >

GLOBAL STRUCTURE BASED PRETEXT TASK
8
=
c Pairwise Distance
= Pairwise distance 2 Global
(1] .
- Goal: To predict the distance between different node pair. £ "'s‘a"c“°c'““e's>
O
: 1 =
£self(9 7A7X7DU) — E Z 4 (fw(|f9’ (g)'vZ — Jor (g)vj |)7 Cpij)
(vi,v;)ES ] »
Pairwise distance between node v; and v;
\ g =g ﬁf\/r% -
<~ o°
= DiSta nceZCIUSterS 1-hop context 2-hop context
« Goal: To predict the distance from the unlabeled nodes to predefined graph clusters h(<z;, 2>, y=0) h(<zi, 2>, y=1)

- Step 1: Apply graph clustering to get k clusters {C;, C5, ..., Ci }
- Step 2: In each cluster (;, assume the node with the highest degree as the center node

1
Eself(9/7A7X7DU) - D— Z Hf@’(g)’vz 1} diHQ

Dy
v; €D
. d; = [di1,diz, ..., dig]

Distance from node v; to cluster c,

Self-Supervised Graph Representation Learning via Global Context Prediction, arxiv2020
Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020102



Pretext Tasks >

ATTRIBUTE BASED PRETEXT TASK

8
=
c
= Attribute mask 2
(1]
* Goal: To predict the masked attribute £

« Apply PCA to reduce the dimensionality of features "_2 Attribute Mask >

Attribute >

1 Pairwise Attribute Similarity
‘Cself(9/7A’X7DU) — | | Z ||f9,(g)'vz _X'i||2 “
a v, EM,

Feature of node v;

= Pairwise attribute similarity
« Goal: To predict the similarity of pairwise node features

1
Eself(0/7A7X7DU) :‘? Z wa(|f9’(g)vz _fel(g)'vj’) _Sij||2

‘ (Ui7vj)€T

Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020
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Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020

MAIN STRATEGIES FOR SSL IN GNN

= Joint training

= Two-stage training

Ignér/l £task: (97 A7 X7 DL) + Aﬁself (0/7 A7 X7 DU)

Feature (Adaptation )
| wa | Extraction |mes

) /. Qz S Hy

( 5 )
G I_’ Adaptation —

_____________________________________________________________________________________

(1) Pre-training

Feature :
— EXtraction | s Adaptation
0, O

(2) Fine-tuning

Feature

) A 1
/I — Extraction —{ da%tatmn

), 6, y

Downstream
Task

Self-supervised
Pretext Task

-

_____________________________________________________________________________________

}_.

_____________________________________________________________________________________

Self-supervised
Pretext Task

S

____________________________________________________________________________________

Downstream
Task

S

o
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M3S

= |dea: Enlarge training dataset through self-training

MultiStage Self-Training Framework

= = = = = = = = = = = =

-
o - - -

______

] Enlarge Labeled
] Data with
L Virtual Labels

<
<
\4

[ find top t confident nodes
GCNs

Multi-stage self-supervised learning for graph convolutional networks on graphs with few labels, AAAI2020
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