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This talk

= How to learn graph representation in various types of graphs?
« GNNs for Homogeneous Graph
« GNNs for Multi-aspect Graph
« GNNs for Multi-relational Graph

= How to effectively train GNNs?
« Self-supervised learning
« Alleviating Long-tail problem
« Robustness of GNN
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Graph (Network)

= A general description of data and their relations




Various Real-World Graphs
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Machine Learning on Graphs

Classical ML tasks in graphs:

= Node classification
 Predict a type of a given node

= Link prediction
« Predict whether two nodes are linked

= Community detection
- Identify densely linked clusters of nodes

= Network similarity
« How similar are two (sub)networks

Link Prediction
(Friend Recommendation)



Machine Learning on Graphs
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Traditional Graph Representation

ABCDETFGHI
AlO0O1 1100 0000 PrOblemS
B 0 001 0 0 :

1 0110 = Suffer from data sparsity
Cl100100100
Df101000110 = Suffer from high dimensionality
E(fo1 0000001 _ _ ,
Flo1000000 0 = High complexity for computation
G100 1100000 = Does not represent “semantics”
H{00 0100000
1{00 0010000 .

Adjacency matrix

How to effectively and efficiently represent graphs is the key!

— Deep learning-based approach?

(Figure credit) https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/8a7d3187-7c57-418c-a426-3aceab96f47f.xhtml



Challenges of Graph Representation Learning

= Existing deep neural networks are designed for data with regular-structure (grid or sequence)
« CNNs for fixed-size images/grids ...

- RNNs for text/sequences ...
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= Graphs are very complex
- Arbitrary structures (no spatial locality like grids / no fixed orderings)
- Heterogeneous: Directed/undirected, binary/weighted/typed, multimodal features
« Large-scale: More than millions of nodes and billions of edges

(Figure credit) Tutorial on Graph Representation Learning, AAAI 2019



Machine Learning on Graphs
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Graph Representation Learning

= Goal: Encode nodes so that similarity in the embedding space approximates similarity in the original network

= Similar nodes in a network have similar vector representations

Node Vector Tasks
fiu—> R4 iy . ’ > | » Node c!assmcatlon
R « Clustering
O Feature representation, - Link prediction
embedding .
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Homogeneous Graph

= A graph with a single type of node and a single type of edge

Num. node types = 1
Num. edge types = 1

ENV_HV1H2

GAG_HV1H2
CHI

Social graph FANER.- -

Nucleocapsid p7

Homogeneous graph

Protein-Protein Interaction Graph

(Figure credit) https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word co-occurrence network (range 3 words) - ENG.jpg
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https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.researchgate.net/publication/327854066/figure/fig2/AS:674567748075520@1537840892354/HIV-1-and-Homo-sapiens-interaction-network-in-virusesSTRING-HIV-1-and-Homo-sapiens.png
https://commons.wikimedia.org/wiki/File:Word_co-occurrence_network_(range_3_words)_-_ENG.jpg

View 3

Multi-layer (Multiplex) Graph %%( | @ %

= A type of heterogeneous network
« Asingle node type, multiple edge types Node: User

= Example 1: Social network

 Relationship between users

Num. node types = 1 Gy

= Example 2: E-commerce Num. edge types >1 > Family
 Relationship between items .
2
= Example 3: Publication network
- Relationship between papers (Citation, share authors) Schoolmate
- Relationship between authors (Co-author, co-citation) Gs
= Example 4: Movie database Colleague

« Relationship between movies

« Common director, common actor

= Example 5: Transportation network in a city
 Relation between locations in a city

Social Network

* Bus, train, car, taxi 13



Heterogeneous Graph

= So far, we have look at graphs with a single type of node and a single type of edges

= However, in reality a lot of graphs have multiple types of nodes and multiple types of edges

= Such networks are called “heterogeneous graph”

Q Movie
Studio DUNE

Num. node types > 1
Num. edge types > 1

A iai Director
Venue Paper Author ctor Movie

DBLP Bibliographic Network The IMDb Movie Network

14



This talk

= How to learn graph representation in various types of graphs?

—GNNsfer-Hemoegeneous-Graph

15



Deepwalk

= Deepwalk converts a graph into a collection of node sequences through random walk
= Treat random walks on networks as sentences

= Distributional hypothesis
« Word embedding: Words in similar contexts have similar meanings

- Node embedding: Nodes in similar structural contexts are similar

Deepwalk
Low(©) = ) log p(olf) = ) log p((N(v:),v:)|6)
0e0 0e0
= Z Z log p(vjlvi), Exampleseq { a=>b—->c—-v;>d—-e—>f

OvjeN(v; ' i
0€0 v;eN(v;) Window size=2 ai—>b—>C—>vi—>d—>ei'>f

« (: The set of all observations obtained from random walks

- 0=(Nw),v;) €0 Center node V;

« Center node v; Neighborhood N(v;) = b,c,d,e
« Neighboring nodes N (v;)

Observation o o= (Nw;),v;)=({b,c,d,e},vij%



Graph Convolutional Network (GCN)

= |dea: Node’s neighborhood defines a computation graph
- Messages contain relational information + attribute information

Determine node Propagate messages and
computation graph transform information

Learn how to propagate information across the graph to compute node features

17



This talk

= How to learn graph representation in various types of graphs?

GNNs for Multi-aspect Graph

18



Is a Single Representation Enough?

Colleague

Purchase history Social network

How to differentiate among multiple aspects?

(Figure credit) Is a single vector enough? exploring node polysemy for network embedding, KDD19

19



PolyDW

= |dea: Similar to the idea of Deepwalk, but consider multi-aspect of each node
- Define the aspect (sense) of each node by clustering the adjacency matrix

(offline clustering)

« For each node and its context nodes, sample an aspect

- Update the node embeddings of the sampled aspect only

Deepwalk
Lpw(0) = ) log p(o]0) = > log p((N(wi),v:)|6)
oe0 oe0

=), 2, log pljlu),

0€e0 ’UjEN(’Ui)

PolyDW
Lporypw(0) = > log p(o|®, 0)
0€e0 1\ Prior (obtained from clustering)
= Y log [y plols(o). P.0) - p(s(0)|.0)]
0€0 s(0)
ey = 0 > p(s()IP,0) - log plols(0). P, 0)
0€0 s(o0)
= > D p6@IP) -1 D log pvjlvi o)) = Lpy,pw(®)
0€0 s(0) v;EN(v;)

Cluster
membership

s(0): A set of possible aspects within an observation o

£V




PolyDW
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Is a single vector enough? Exploring node polysemy for network embedding, KDD2019

( facet sampling for context nodes v

e | " N

Random Walk 2 (0,) ( facet sampling for context nodes v
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Node Facet Distribution Facet Assignment Objective Optimization
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PolyDW: Summary and Limitation

Done berore embeddinglearning

- ,hal'n
@ 1. Each node always has the same fixed aspect Start network
regardless of its current context embedding

@ 2. Final network embedding quality depends J

on the performance of clustering - ’ J T Donel
* Training cannot be done end-to-end '

-18
s a single vector enough? exploring node polysemy for network embedding, KDD 2019 10 =05 00 05 10 15 20 25



Asp2vec: Motivation

= |dea: Each node should have different aspect according to its neighborhood (context)

Colleague

Context: Family

‘ Assign
' “Family” aspect

23



Asp2vec: Motivation

= |dea: Each node should have different aspect according to its neighborhood (context)

Colleague
> Context: Schoolmate
S a» O
dlin e
) Famlly ‘ Assign
' “Schoolmate” aspect
W™
;‘ Assign a single aspect for each node based on the context

However, this assignment
process is non-differentiable

24



Asp2vec: Overview

= Adopt the Gumbel-softmax trick [1] to dynamically sample aspects based on the context
« Continuous relaxation of discrete random variable

Gumbel-softmax
Sample the aspect

Embedding of v; Embedding of N(v;) regarding aspect s
Aspect of node v; 5 that gives the
exp[ (P;, Readout*’(N(v;))) + T .
p(a(vl) — SlN('Ui)) — = p[< '] ( : ( l))) gS]/ hlghest value
2o expl(P;, Readout(s )(N(vi)» +gs]/T (Continuous relaxation of
Local context of v; = discrete random variable )
Probability of v; being selected as Gumbel-softmax
aspect s given its context N (v; : :
P ; (w0 Differentiable Gumbel noise drawn gi = —log(~log(u:))
\L from Gumbel(0,1) Uj ~ Uniform((), 1)

z; = softmax [log 7; + g;|

Temperature parameter
___exp((log i + i)/ r>7
- «K As 7 — 0, samples from the Gumbel-
z:j=1 €xp ((log 7j + gj) s Softmax distribution become one-hot

fork=1,...,K 25




Asp2vec: Single-aspect - Multi-aspect

eXp( <Pia Q]))
(Deepwald Vi€W v; EN(v1) exp[(log (P;, Readout™® (N(vy))) + g5)/7]
' > K _, expl(log (P;, Readout™) (N (v:))) + g')/7]

K

Multi-aspect 70 = > " Y p(d(vi) = sIN(i)Ylod pla;loi, p(6(vi) = 5))
(asp2vec) ViEW p;e N(v;) s=1

Aspect selection \
probability exp((P;, Q§'S)>)

Sy ev exp((Pi, Q5)))

Final objective  p _ E : (w)
asp2vec — .
function P ol asp2vec

26



Asp2vec: Is Multi-aspect Enough?

= Authors can belong to multiple research communities

» These communities interact with one another

More Related Less related

Interactions among aspects
Database H Data H Con.1puter §dasp
Mining Architecture should be captured

= Goal: Aspect embeddings should be
1. Related to each other (Relatedness)
 To capture some common information shared among aspects (e.g., DM « DB)
- 2. Diverse from each other (Diversity)

« To independently capture the inherent properties of individual aspects (e.g., DM « CA)

How can we capture both relatedness and diversity among aspects?

27



Asp2vec: Capturing Diversity and Relatedness among Aspects

= Capturing diversity: Minimize similarity among aspect embeddings (= maximize diversity)

Filmtrust

"
K-1 K ; ) N: B
regasp = Z A- Slm(Q(l) Qg)) fk’) c Rnxd (Aspect embedding matrix w.r.t. aspect i) - i
i=1 j=i+ ° i, e=0.1
Aspect similarity between aspect i and j L
|
(i) W) o) 0) 0 oo Q) () 0
: : : : . , Q) . .
e 195 195 : -
(Cosine similarity) g
..
= Capturing relatedness: Allow similarity among aspects to some extent 1Le=09
|
s
A- S1m(Q(’) QU)) = Z Wi f(Q(l), Q(’)) (Maximize diversity + allow some similarity) L s T
Filmtrust '1.0
l-o.a
h 1, Lf(Q(l), Q%’))‘ > € * Enforce loss if similarity is larger than € £ te € =1.0
W. . = N .. . g l-o.4
i,j 0. otherwise Allow similarity as much as € i ' (No regqsp)
i

28



Asp2vec: Final Objectives

L = Laspovec + Aregasp

Multi-aspect Aspect
embedding regularization
Fapaec == 3 75
asp2vec asp2vec

weW

K
Taec = 20 >0 > p(6(@i) = sIN(wi) log p(vj v, p(d(wi) = 5))

ViEW p;eN(v;) s=1

K-1 K
T€8asp = Z; .ZlA‘Sim(QS)a Qg))
i=1 j=i+

4
A-Sim(Q\”, Q) = Z wi f Q"7 Q(;{))
h=1




Asp2vec: Architecture

Random walk

Summarize context information

Context-based aspect selection

Multi-aspect embedding

. A . .
(Skip-gram) spect regularization

Context
window

L1

U3
Target V3
node

Uy

Usg

Readout © (N (v3))

p(8(v3) = 0[N (v3))

Readout W (N (v3))

p(6(v3) = s|N(v3))

Selected

n

/

Readout @ (N (v3))

N (v3) = {v1,V;, V4, Vs5}

/NN

I Gumbel(0,1)

g ~ —log(—log(Uniform(0,1))

3
X
X > D p6ws) = logp(wylvs, p(B(vs) = 9))
X JEN(v3) s=1
x J 4
X [
X

P
X €
X
X b

2 3 J/

X > > a-sim@®, 0%
% i=1 j=i+1
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Splitter

= Given an original graph, compute a persona graph
« Add constraints on Deepwalk to relate the persona graph with the original graph

amo
XY

(a) original graph G (b) ego-net of a (c) splitting a in two personas (d) ego-net of ¢ (one persona) (e) persona graph

migimize —log Pr ({vi—w, - , vi+w} \ Vi | @Gp(vi)) —Alog Pr (vo | Dip(0i)).
Gp

Predict the N (v;) using the persona of v; Predict the original embedding of v; using its persona

A



DisenGCN: Disentangled Graph Convolutional Networks

Feed back to improve neighborhood routing.

conc

channel 3 -

= v Layer @
Neighborhood Routing 1 Extract features specific to each factor. Output

Step 1: Project x; into K different subspaces (aspects) Step 2: How do we know which of the neighbors belong to which channel?
T d
; din out T (1)
Z; ) = O(Wk Xi T bk) Wy € Rd *TR p(t)k _ exp(zy, €}, /T) Dy x: probability that factor k is the
’ HO'(W;IXZ + bk) H2 b € R™%* “ 25:1 exp(zv,k/Tc,(f,)/T) reason why node u reaches neighbor
(t—1)
- I2-normalization to ensure numerical stability Cz(ct) _ _Twk £ Z“:(“’“)EG p(:ﬁ) Zo.k c;: The final output of the k-th channel
- Z;) approximately describes the aspect of node i that are |0,k + ZU:(u,U)eG Dok Zo k ||2 (combination of the current node u and
related with the k-th factor its neighbors)
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This talk

= How to learn graph representation in various types of graphs?

GNNs for Multi-relational Graph



R-GCN: Relational GCN

= Knowledge graph is a type of multiplex network

usa

& ’,'
16“/

R

educated_at

[ Mikhail Baryshnikov ] ={ Vaganova Academy ]

« Nodes are entities, the edges are relations labeled with their types m

_ rel_1(n) ——

_ rel_1(out)

— rel_N(n) —

_ rel_N(out) —

(.

_ self-loop

—rel 1

. J

— self-loop —

Ce

Vilcek prize ]

1
GCN R = (,( LWORD 4 hgw)
JEN; i

1
Reon Y=o (30 Y w0 e wng

C.
reR jeENT 0T

B
WO = oy

Address overfitting and rapid
growth in # parameters



HAN: Heterogeneous Graph Attention Network

= ldea: Apply graph attention networks to each network and then aggregate through attention

Graph Attention

Graph Attention
Network

Network

\

[

/
-lf----(--

. Attention

o _ (] /
Z; “’(Z o;j - hj

JENT .
(b) Semantic-level Aggregating =

I [h/|n
a?; _ softmaxj(e?;.) _ eXP(O'(a@ [Tl” ],]))’ ’ b
ZkeN;p exp(a(aq) : [hi”hk])) 7 8 7
. z : Cp " HDp

P ’
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Background: Mutual Information (Ml)

Measures the amount of information that two variables share

If X and Y are independent, then Pyy = PyxPy = in this case, Ml =0

Pyxy ]
Py Py

= Dy (Pxy||PxPy)

I(X;Y) = Ep,, [log

High MI? = One variable is always indicative of the other variable

Recently, scalable estimation of mutual information was made both possible and practical through Mutual
Information Neural Estimation (MINE)

36



Deep Infomax

= Unsupervised representation learning method for image data

= |ntuition: Maximize mutual information (Ml) between local patches and the global representation of an
image

M x M features M x M Scores
“Rea|”
Local feature (+)
4 ¥ % -
........... » \
— M Discriminator tries to discriminate
Global feature
between “Real” and “Fake”
“Fake”
... —
—_— Local feature (-) M
M

M x M features drawn from another image



Deep Graph Infomax

= Deep Graph Infomax (DGI) applies Deep Infomax on graph domain

= Unsupervised graph representation learning method that considers node features

= Notations
I = g — —». RF
X = {331, Zo, ... ,JZN} : A set of node features (N: number of nodes) L; €
A € RNVNXN - Adjacency matrix

= Learn a graph convolutional encoder &£(X,A) = H ={hy,hs,...,hn} h; € RF
- Generates node representations by repeated aggregation over local node neighborhoods

—

- h; summarizes a patch of the graph centered around node i (= patch representation)

Analogy: Local patch representation in an image == Node representation in a graph

38



Deep Graph Infomax

, D(hi,5) = o (E{wg)

> D ~~~> |+ Readout function

A

:, R < N
[ 1 r

Corrupt C

|
> D AaAanAn>» —

—_— e e e e — — — — — — — — — — —

g=1

3w B - o - D)

Maximizes the mutual information between the local patches (h;)

and the graph-level global representation (s)
39



DMGI: Unsupervised Attributed Multiplex Network Embedding

= ldea: Adopt infomax principal to multiplex network

Original Network X Corrupt X Corrupted Network
4 3 s 4 3
> Readout <
Schoolmate e ‘\Qi DGI
1. ©2 Dl ——[p X ¥
e i / Real? Fake? ——
Type 1 eal: or daKe: _
hgl) . - hgl)

D (h§"‘>,s<’“)) — o(h M)

Score matrix w.r.t.
relation r



DMGI: Unsupervised Attributed Multiplex Network Embedding

Original Network X Corrupt X _  Corrupted Network
e
Schoolmate /.\; : ; WWA /.\.; : ; /
D «— | D
Rel.
TYpelh(l) _ h<1>

I ﬁgz)

Q
o
g
>l

Corrupted Network

Original Network X
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DMGI: Unsupervised Attributed Multiplex Network Embedding

Original Network X Corrupt X Corrupted Network
4 3 s 4 3
> Readout <
Schoolmate e ‘\.
1 D2 D — | T D ;@
Rel. N, / . \ J
Typel .- Q Attention Q o
Which relation is h, - & technique § c 1
. NER © -5
more important for > %"% «—h, = Z agr)h(r) _——| & A
each node? @ 1 |78 rer 2 _I g
Rel. * /
‘l’ pe2 A s D D A 3

Family

Q
o

g
>

Original Network X
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DMGI: Unsupervised Attributed Multiplex Network Embedding

Original Network X Corrupt X Corrupted Network
4 3 s 4 3
> Readout :
Schoolmate o e
1 . @2 D «— D @
Rel. N / T 3
Q ~---Consensus Regularization----, Q
Type 1 ) 'R z A " — B ()
hi” ] & |1 L 1S e h;
cm | ! Agree Disagree I B O
¢ innc ol emmmd BmbEh
— i S
S g L B H B0
S | : < h1
Real |[=============-=- Fake é///////////
A A
amily Seadout s@ . </
2
- N C t X )
Original Network X orup X Corrupted Network



HDGI: High-order Deep Graph Infomax

= |dea: High-order Mutual Information
- We should not only consider the extrinsic supervision signal, i.e., s < h, but also intrinsic signal, i.e., f < h

I(X;Y) = H(X) + H(Y) — H(X, Y) DGI

4

I(X1;X2;X3) = H(X1) + H(X2) + H(X3)
— H(X1,X2) — H(X1,X3) — H(X2, X3)
+ H(X1, X2, X3)

=H(X1) + H(X2) — H(X1,X2)
+H(X1) + H(X3) — H(X1,X3)
—H(X1) — H(X2,X3) + H(X1, X2, X3)

I(hy;s;£n) = I(hp;s) + I(hp; £n) — I(hp;s, £n)
‘ Difference-based estimation (Mukherjee et al, 2020) 1(X1: ) + T(X1: X3) — I(X1: X, X3)
max I(hy;s;f,) = maxI(hy,;s) + max I(hy,;f,) — maxI(hy,;s,f,) - 1, A2 1,43 1,42, A3
‘ Empirical finding
L = Agl(hy;s) + Afl(hp; £,) + A]I(hn§ s, fn)



This talk

= How to effectively train GNNs?
« Self-supervised learning



What is self-supervised learning?

= A form of unsupervised learning where the data provides the supervision
= |[n general, withhold some part of the data, and task the network with predicting it

= An example of pretext task: Relative positioning
« Train network to predict relative position of two regions in the same image

I
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(Figure credit) Unsupervised visual representation learning by context prediction, ICCV2015



What is self-supervised learning?

= Pretext task : Rotation
« Which one has the correct rotation?

(Figure credit) Self-Supervised Learning, Andrew Zisserman

= Pretext task: Jigsaw puzzle

(b
Shuffled
= Pretext task : Colorlzatlon




Self-supervised Learning on Graphs: Deep Insights and New Directions, arxiv2020

Examples of Pretext tasks on graphs

Pretext Tasks >

Attribute Mask

Attribute

Pairwise Attribute Similarity

Node Property >
Local
g_ Edge Mask >
>
[l
g Pairwise Distance
prs Global
g Distance to Clusters>
-
@)
Y=
= >

(Figure credit) Tutorial in Graph Neural Networks: Models and Applications, AAAI2021



Pretext Tasks >

Node Property

Local Structure-based Pretext Task

>
>

Edge Mask

= Node property
« Goal: To predict the property for each node in the graph such as their
degree, local node importance, and local clustering coefficient.

Information Type

Predicteld degree of node v;
Loats (O, A X Do) = 1 D, (for(G)us =
v €Dy

Degree of node v;

= Edge mask
- Goal: To predict whether or not there exists a link between a given node pair

Lse17(0',A,X,Dy) = Cross-entropy loss

: > f(fw(|fef(9)w—fef(G)ij,l)+ﬂ1 ST (fullfer (G)e — for (), 1), 0)

|Me| (vi,v5)EMe I e| (vi,vj)eﬂe

Connected edges Not connected edges



Pretext Tasks >

Global Structure-based Pretext Task

Pairwise Distance

= Pairwise distance
« Goal: To predict the distance between different node pair.

Loas (@ AKX DY) = S (fullfor (@), — for(G)u,])iCpy)

S
| | (’Ui ,'UJ)GS I— 241
Pairwise distance between node v; and v;

\ < ﬁ—.\/r /7<Zi — -
<~ -

= DiSta nceZCIUSterS 1-hop context 2-hop context
« Goal: To predict the distance from the unlabeled nodes to predefined graph clusters h( <z, 2>, y=0) h(<zi, 2>, y=1)

Global
Distance to CIusters>

Information Type

- Step 1: Apply graph clustering to get k clusters {C;, C5, ..., Ci }
- Step 2: In each cluster (;, assume the node with the highest degree as the center node

Loe(0',A, X, Dyy) = Z 1 for (G)w, — di]|?
'UzeDU
d; = [di1,di, ..., dig]

Distance from node v; to cluster c,
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Pretext Tasks >
Attribute-based Pretext Task

= Attribute mask
« Goal: To predict the masked attribute

« Apply PCA to reduce the dimensionality of features

Information Type

Attribute Mask

Attribute >
>

Pairwise Attribute Similarity

, 1
Loets (0, A, X, Do) = =y D [ for(G)os — il

M|
v;EM
A Feature of node v;

= Pairwise attribute similarity
« Goal: To predict the similarity of pairwise node features

1
Eself(0/7A7X7DU) :m Z wa(|f9’(g)vz _fel(g)'vj’) _Sij||2

(’Ui 7vj)€T
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Context prediction

= Pretext task: Context prediction

Input graph

(a) Context Prediction

C\/©)‘\HD7

o

@ = Center node
= Context anchor nodes

K-hop neighborhood

Nodes that are shared between the
neighborhood and the context graph

Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain
GIN 67.0 74.2 +7.2 64.8 + 1.0 742+ 1.5 | +94
GCN 68.9 72.2 +3.4 63.2+1.0 709 £ 1.7 | +7.7
GraphSAGE 68.3 70.3 +2.0 65.7+1.2 685+ 15 | +2.8
GAT 66.8 60.3 -6.5 68.2 + 1.1 67.8+36 | -04

52



Taxonomy of Self-Supervised Learning

So far

Generative / Predictive

Data
Zo

Data
I

Data z

Data z;

= Contrastive learning

Contrastive

- Given: X = {x, x%, x{,..,xy_1}; Similarity function s(-) (e.g., cosine similarity)

« Goal: s(f(x), f(x*)) > s(f(x), f(x7))

 Contrastive/InfoNCE Loss

exp (s(f(x), (1))

Classification
(similar or not)

Ly = —Ey |log

(Figure credit) https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

exp (s(f (), £ ) + 20t exp (s (00, £ (7))




The Contrastive Learning Paradigm

Maximize agreement
Z; < > Zj

g(~>] foc)

Projection Head

h; <— Representation —» h;

fC)

Encoder

(f) Rotate o°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
= Algorithm / log exp(sim(zi, 25)/7)
. i,j — — 10 5N .
« 1) Sample mini batch of N examples et Liesq exp(sim(z;, 21)/7)

« 2) Create 2N data points via Data Augmentation
- 3) Given a positive pair, treat other 2(N — 1) points as negative examples

« = Instance Discrimination!

Reduce: Dist. between representations of different augmented views of the same image (Positive)
Increase: Dist. between representations of augmented views from different images (Negative)



Deep Graph Contrastive Representation Learning (GRACE)

= Pull the representation of the same node in the two augmented graphs

= Push apart representations of every other node

eS

s

Original features

Corrupted features
g Re ) Positive pairs
Wk ,, Ve ed, <----= Negative pairs (intra-view)
Ode £ 8es . . .
eaq,res <---> Negative pairs (inter-view)

eO(ui,vi)/T

Y

N N
\eO(ui,vi)/t + S: ]]-[k;éi]ee(ui"vk)/q- 4+ Z ]l[k#i]ee(ui,uk)/T
siti k=1

the positive pair lle B J

Vv Vv
inter-view negative pairs intra-view negative pairs
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Contrastive Multi-View Representation Learning on Graphs

= ldea: Contrast encodings from first-order neighbors and a general graph diffusion
- Maximize MI between node representations of one view and graph representation of another view and vice versa

4 [ N 4 2\ 4 N 4 A
, 0000
' GNN MLP o MLP Pool
, ':'> — ﬁ> | < b < <
@ 9o(-) | | fu(.) O—@ > fs(-) 3y
| 0000000 sy
L J \ . J : L . J N\ . J
Shared Contrast . Shared -
4 R\ e N Ve , N 4 : N
.
GNN MLP o : MLP Pool
- —> ] —> l\\ «——> B o <
— 9u(-) | [ fu) | O fo(-) >
0000|0000
\_ L AN J N J L J
1 1 oL g o
ax — S| =5 M1 (h‘?‘,h5> MI <h. ,h“)]
Structural 9?3,;,(1;) |G| gezg lg] ; [ irflg )+ v’y

Augmentation



GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

= |dea: Subgraph instance discrimination in and across networks

Graph 1
Graph x4 Encoder - .
L exp (9" k+/7)
L=-log ¢ -
Y Contrastive Zi:() exXp (q ki/’[)
Slml{arlty—> Loss
Graph x*o -
= Query instance x4

= Key instances {x*o, x’1, xk2}
Graph :

Graph xk1 | Encoder u Embedd|ng
\‘| f .
, < - g (embedding of x9)
! kO'klth . q
. - ie,q=f(x9)

Graph x*2

T &

+ ko, ky, k; (embedding of {x¥o, x*1, x¥2))
- e, ky = f(xk)
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Shortcomings of Contrastive Methods

= 1) Requires negative samples = Sampling bias
 Treat different image as negative even if they share the semantics

= 2) Requires careful augmentation

et o%
R N No%
Crop S s W . -0.04

-50
- -4.0% -1.0% -0.3%
Cutout NodeDrop o o o
C - 0.00
S 40
% Color EdgePert - -6.4% -4.0%
€
£ Sobel 30 -=0.04
5 Subgraph SRENEZRES kR 7S -12.9% -12.9%
—
-
Noise
ﬁ 20 - -0.08
AttrMask - 1.1% 4.5%
Blur
10
=0.12
Rotate MoCL-DK- -1.2% -3.5% 4.5% 1.0%

O \)‘0\)‘ (/0\0( C)o‘oe\ $0'\(pe %\0( Q\o\ﬁ\'e

2nd transformation

Image classification Graph classification



Can We Remove Negative Sampling?

= Cross-view prediction framework without negative samples?
« Learn representations by predicting different views of the same image from one another

= Problem: Predicting directly in representation space can lead to collapsed representation
« Contrastive methods circumvents this by reformulating the prediction problem discrimination task (Pos <> Neg)

MSE Loss

Cross-view prediction framework Trivial Solution = Constant Vector
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Straightforward Solution to Overcome Collapsed Representation

= Use a fixed randomly initialized network to produce targets for our predictions

Randomly
 ——_— —_—
Initialized

Top-1 Accuracy 2 1.4 %

Randomly
ﬁ . . . ﬁ
Initialized
N B -

supervision

MSE

Loss

Top-1 Accuracy =2 18.8 %
even with random supervision

Core motivation of
non-contrastive methods!
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Bootstrap Your Own Latent (BYOL)

= BYOL uses two neural networks to learn: 1) online and 2) target networks

= From a given target representation, we train a new online representation by predicting the target
representation

view representation projection prediction

N

1) Online Network Update = Gradient-based update

Ty
fo ﬁ g6 <
:l Yy I > = ine 7 = |2 C [
0 I 0 i— q0(z0) Y online Loe A Hq0<z9) B Z/&’HQ LngL =Lye+ Loe (Symmetrize)
\ )
I ) |
> “¢

input
image t

loss ] 0 <« Optimizer(ﬁ, VQEE?L, 77)
| ) | ) »’/ . Online network
> Y. —AA—> 58(7 targe
fe LJ 9¢ 5g
— 2) Target Network Update = Exponential Moving Average
Only online parameters are updated to reduce the loss, ¢ <16+ (1—1)0

while the target parameters follow a different objective Target network Online network

— Avoid Collapsed Representation
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Large-Scale Representation Learning on Graphs via Bootstrapping

= BGRL is a simple extension of BYOL to graph domain

= Representations are directly learned by predicting the representation of each node in one view of the
graph, using the representation of the same node in another view

—1 I T
Z(l.i)H(zii)

2
N .igo 1Z1,a) [ H (2,0

= Graph Augmentation - Node attribute masking + Edge masking
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Shortcomings of Contrastive Methods

Research Question
Is augmentation appropriate for
. graph-structured data?

= 2) Requires careful augmentation

Q & N
o Q¢ 20 22 he)
e e ) “\‘\ 0%
c WO %7 » We L 0.00
rop , |
-50
Cutout NodeDrop- -4.0% -1.0% -0.3%
- 0.00
S 40
% Color EdgePert- -5.6% -6.4% -4.0%
€
£ Sobel 30 [ -0-04
& Subgraph -15.6% -12.9% -12.9%
g Noise = o
- AttrMask - -1.5% 1.1% 4.5%
Blur
10 =0.12
Rotate MoCL-DK- -1.2% -3.5% 4.5% 1.0%
oc < o\ e ol xS
C,(OQ C\)&O (/o\0 60‘0 \§0\9 N Q\o’@ \‘e(a
2nd transformation
Image classification Graph classification
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Motivation: Is Augmentation Appropriate for Graph-structured Data?

Random Cropping Color Distortion

= However in the case of graphs, we cannot ascertain whether the augmented graph would be positively
related to original graph

= Image’s underlying semantic is hardly changed after augmentation

Drop Node Drop Edge
d OH 0. OH Community 1
O. S
T -> /\I/OY AT —
1dh g dh
aspirin alkene A RS
Bobgim ia%
Perturb Edge g / -, ;S
. Community 2
0. OH Alice
0 » Q Q \
o dh
0 il W
aspirin ¥ - lactone Comimunity 3

Because graphs contain not only the semantic but also the structural information



Motivation: Is Augmentation Appropriate for Graph-structured Data?

= Performance sensitivity according to hyperparameters for augmentations

bace

Yo, Sy, & A
(e b, &7 Sy,
@o,% 9»%/7 ep, s

St

NodeDrop - -17.56% | -17.70% |-15.35% |-

Comp. Photo CS Physics
Node | BGRL| -4.00% -1.06%  -0.20%  -0.69%

N ) 3 7 Subgraph - -21.65% -22.82% -24.99% -21.17% Subgraph- -19.42%
Classi.| GCA | -19.18% -5.48% -0.27% OOM 159

Node | BGRL| -11.57%  -13.30% -0.78%  -6.46% EdgePert - -15.58% -22.07% |-14.96%  -16.03%  Edgepert -JRNIED -31.03% _20<
Clust. | GCA | -26.28% -23.27% -1.64% OOM

FeatMask -| -14.56% -26.39% | -15.15% FeatMask- SERPLA -31.45% EEFEA
\

NodeDrop : Node Dropping / Subgraph : Subgraph Extraction / EdgePert : Edge Perturbation / FeatMask : Feature Masking

Node-level task Graph-level task

= The quality of the learned representations relies on the choice of augmentation scheme
« Performance on various downstream tasks varies greatly according to the choice of augmentation hyperparameters

We need more stable and general framework for
generating alternative view of the original graph + remove negative sampling process
without relying on augmentation



Augmentation-Free Graph Representation Learning

= |nstead of creating two arbitrarily augmented views of graph,

- Use the original graph per se as one view, and generate another view by discovering nodes that can be serve as pos
itive samples via k-nearest neighbor search in embedding space.

= However, naively selected positive samples with k-NN includes false positives
« More than 10% of false negatives

-®- Rand. GCN  =—E- Adj. == Rand.GCN + Adj. -+ Features
Computers WikiCS
—h—————&
;5 ] ~.~~~

E . —-.—-—-'.'--g-_'
I
o
©
g
S
@]

enaafprnnnnns Anrrnnns A

4 8 16 32 64 4 8 16 32 64

Num. Neighbors in k-NN Num. Neighbors in k-NN

We need to filter out false positives regarding local and global perspective!
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Capturing Local and Global Semantics

Cluster 1

Cluster 3

Cluster 2

 B;: Set of k-NNs of query v;
« N;: Set of adjacent nodes of query v;
« C;: Set of nodes that are in the same cluster with query v;

A Query Node (v;)

O Node (V\v;)

:: .. Nearest Neighbors (B;)
<> Adjacency (N;)

Same cluster as v; (C;)

'::) Local Positive (B; N N;)

l::) Global Positive (B; N C;)

@ Rcal Positive (P;)

= Obtain real positives for v;

= Minimize the cosine distance between query and
real positives P;

ZehﬁT

Log=—= S‘ D

z—l v; €P;
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Overall Architecture of AFGRL

do

: : z; |
5 Adj.(N) — | |
‘\ : ( l) Local (N; N B;) Rl L b

k-NN(B,) :> P;

1 Global (B; N C))

% K-means (C;) — \ ¥

! Z i
' =711 5

1N
H > w2

Stop-Gradient =1/eh




Experiments

= Task: Node classification

o1 Computers 94.0- Co. CS
3 93.51
E 90 1 @- o— o
WikiCS Computers Photo Co.CS Co.Physics e 93.01
Sup. GCN [ 7719 £0.12 86.51 £054 9242 +022 93.03+£031 95.65 £0.16 g 897 92.5 1
Raw feats. | 71.98 £0.00 73.81+000 7853 +£000 90.37+000 93.58 £0.00 < '
node2vec | 71.79 £0.05 84.39 +£008 89.67 +£0.12 85.08 £0.03 91.19 +0.04 88 L. | | — 9200 . | .
DeepWalk | 74.35 £006 85.68 £006 89.44 o011 84.61 £022 91.77 +o0.15 4 8 16 32 77 4 8 16 32
DW +feats. | 77.21 +£0.03 86.28 +£007 90.05 +£0.08 87.70 £0.04 94.90 + 0.09 Num. Nearest Neighbors (k) Num. Nearest Neighbors (k)
DGI 7535 +014 8395 +t047 91.61 £022 92.15+063 94.51 +052 C t Co. CS
GMI 74.85 £008 8221 £031  90.68 +0.17 OOM OOM 91- omputers 94.0- 0.
MVGRL 7752 £008 87.52+0.11 91.74+007 92.11 £0.12 95.33 +0.03
GRACE 7797 + 063 86.50 £033 92.46 +£018 92.17 £0.04 OOM 9 93.51
GCA 7794 £ 067 87.32+050 92.39+033 92.84 +0.15 OOM <90+ > —o——¢
RGRI 7686 074 8960 +0a7 0307 +0ag 9 o—o—%—o—0 930_r ®
AFGRL 77.62 £049 89.88 £033 93.22 +028 93.27+017 95.69 +0.10 2 8ol '
g 92.5-
88— - : - — 92.0- . . . :
1 3 5 7 9 1 3 5 7 9

Num. K-Means Runs (M) Num. K-Means Runs (M)

AFGRL outperforms SOTA baselines AFGRL is stable over hyperparameters
—> Can be easily trained compared with

other augmentation-based methods.
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Experiments

= Task: T-SNE visualization

(b) AFGRL

Nodes are more tightly grouped in AFGRL
—> Captures fine-grained class information
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This talk

= How to effectively train GNNs?

« Alleviating Long-tail problem

7



Motivation: Long-tail (Class imbalance)

Purpose of ML: “To generalize well ”

30%
25%
20%
15%

10%

v
R

a
®

MBTISH= Q1 S|

[E2] : MBTIGIO|E 93, 2004, SH=42| ZAFA 4 (102,989Y)]

ISTJ

ESTJ

ISTP

ISFJ

ISFP ESTP ESFJ ESFP INTJ ENFP INFP INTP ENTJ ENTP

INFJ

ENFJ
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Motivation: Long-tail in GNNs

= Graphs exhibit long-tail problems in two perspectives:

700 0.7

600
3500 0.6
qc)400
- 0.5
o 300
(O]
- 200 0.4
100
0 0.3
Q/c» /\9 /,]9 D vo) o)q @
,\9 ’19 ,,)0 b‘Q ")Q bQ
Class

1) Class long-tailedness, 2) Degree long-tailedness

350 0.75
300 0.70
250 0.65
o)
200 0.60 O
150 <
0.55 Q
100
50 0.50
0 0.45
VA X5 0N 0O

Degree

Predict

_

True Positive Rate + True Negative Rat
Balanced Accuracy(bAcc)z( rue Positive Rate + True Negative Rate)

2

[Positive RIS
FP

Actual

TN
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Motivation: Long-tail in GNNs

= Graphs exhibit long-tail problems in two perspectives: 1) Class long-tailedness, 2) Degree long-tailedness

70
s 300 >8
250 56
60 (@)
200 54 <L[)
150
55 52 ©
100
| 50 ¢, | 50
0 = a5 ol MBS BIEIE - 48
Q/o, /,\/q /’Lq D b9 o)o) (oq 1T %49 A Q),\/QQ,\"\',\/"L,\P\:’)
QN QS
O e S S S
Class Degree

Predict

_
[Positve RIS

[Negative [l N

(True Positive Rate + True Negative Rate)
2

Balanced Accuracy (bAcc) =

Actual
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Long-Tailedness: Class Perspective
Imbalanced Node Classification on Graphs with Graph Neural Networks (GraphSMOTE)

= Motivation: Extend a well-known imbalanced learning technique (SMOTE) to graph domain

Majority class

.’ ® o .-
o & o4
Minority class /7 ® ®

Original Dataset

Generating Samples

Resampled Dataset

@ Real user

@ Bot
(a) Bot detection task

@ Real user

@ Bot
@ Generated

(b) After over-sampling

Vanilla SMOTE fail to provide relation information for newly synthesized samples

75



Long-Tailedness: Class Perspective
Imbalanced Node Classification on Graphs with Graph Neural Networks (GraphSMOTE)

= Main idea: Train edge generator based on existing nodes and use them for synthetic nodes:

nn(v) = argmin ||h,14 — h1||, st. Y, =Y,
u

/ hy = (1-68) -hy+6-h,,

h(v) h(nn(V))
For existing nodes,

For synthetic nodes,

1 HEG.S
A[U,, u] — o,u i '7
0, otherwise.

Embedding

Epy = softmax(o(h}, -S- hzl)). -Eedge = ||E - Allfg,

¥ }"III by || | 8

5 Luote= ) D (A0 ==0) - log(®o[c]) | min Luoge +7- Ledge

uE(VL ¢
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Long-Tailedness: Class Perspective
Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification (GraphENS)

= Motivation: Neighbor memorization problem (Due to message passing of GNNs)
- Existing approaches overfit to neighbor sets of minor class nodes, rather than to minor nodes themselves

Node replacing Neighbor replacing

( 1 Vanchor 1 Vanchor =

een J
. Major XXU nodes Seen nodes surrounded by Seen neighbors

J

Unseen nodes surrounded by Seen neighbors Seen nodes surrounded by Unseen neighbors

To see whether the model overfits to the node To see whether the model overfits to the neighbors
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Long-Tailedness: Class Perspective
Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification (GraphENS)

= Motivation: Neighbor memorization problem (Due to message passing of GNNs)
- Existing approaches overfit to neighbor sets of minor class nodes, rather than to minor nodes themselves

1- Seen Il unseen

100, 100

90

80

70?

Accuracy (%)
Accuracy (%)

60

50

RW 0S Ours

RW (05 Ours

(c) Node-Replacing (d) Neighbor-Replacing
I : Accuracy of seen nodes surrounded by seen neighbors I : Accuracy of seen nodes surrounded by seen neighbors

I : Accuracy of unseen nodes surrounded by seen neighbors [lll: Accuracy of seen nodes surrounded by unseen neighbors

Performance drop of existing approaches in the neighbor replacing experiment is steeper than in the node replacing
- Neighbor memorization problem is a critical obstacle!
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Long-Tailedness: Class Perspective
Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification (GraphENS)

= Main idea: 1) Mix two ego-networks rather than mixing two nodes, 2) Selectively mix features

Overall framework

__________________________________________________________________

Minor Ego Network Vmixed
y ) (b) Saliency-based o\
V/ Node Mixing D . 4
oS P
; \
( x.l
\ ~ N~ Attach

(a) Neighbor Sampling
'\A/

~

Target Ego Network Synthesized Ego Network

(b) Mix nodes (Feature saliency-based)

ot Mixu
0 \ P g \ Ay \
'/ Convex Combination ’\O ,I:-:I —_— '\O h
— ~ ~
3 Vminor Vnnixed

0123 KL divergence 0123
p(U|Vminor) Sample 1 T
3

P Masking Salient features

Neighbor distribution / ) = =
of mixed node o« = L1l > R‘ @ N || —e[ I

\ 8 . gufv:ar: b Vtarget Masked Vg get
p(u|vmiwed) - ) p(u\vmmor) + (1 - 95) p(U’Utarget> Umized = (1 - AK) ® Uminor + AK ® Vtarget
KLD btw logits of minor and target node Select top-K features with high gradients and mask them
Rely on more similar target node - Mix with general features (non class-specific)
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Long-Tailedness: Degree Perspective
Investigating and Mitigating Degree-Related Biases in Graph Convolutional Networks (SL-DSGC)

= Motivation: Given limited supervision, performance of GCNs becomes unsatisfying for low-degree nodes

= Approach
- Bias reduction in model perspective (due to parameter sharing btw nodes)

« Degree-specific GCN layer with RNN to generate degree-specific parameters:

Xl_+1

1

:0( Z a,-j(Wl +Wéo))x§)

JEN(i)

l
Wk+1

Degree-specific parameter

- Bias reduction in data perspective
 Create pseudo labels with uncertainty scores = Pseudo labels increase the chance of connecting to low-degree nodes

Step 1

|

_—

2

/
[Z
&
%
BN

[pmnraor

Annotator

Pseudo labels

Degree-Specific GCN
Y()

X
%
W/
v/

Uy Student

1\] )
A \
A

= RNN(W)),

k=0917°°' ,dma)h

Step 2

RNN

Wo {Wl — W, — wW; — W,
Node Features |
_— 1\ X2 iz
g . \\\3 ®
N ®
5\\ X6

)

Soft + True Labels (VL5)

&

()

Bayesian Neural Network (BNN)

Teacher

Avoid overfitting on inaccurate
pseudo labels

Y')

it

Student

Eiii;;;l!!!@ii'!!
\7

Teacher

Pretrain student and teacher (independently)

BNN

E — -

Fine-tune student using generated labels
and uncertainty scores from teacher

Use generated labels and
uncertainty scores from teacher
- Get clean pseudo label

Dynamic step size
ni = n-exp(—ac;) - exp(pd;)

Confidence obtained from BNN
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Long-Tailedness: Degree Perspective
Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks (meta-tail2vec)

= Motivation: How do we learn embedding vectors for tail nodes from limited structural information?

= |dea: Tail-degree node embeddings as a few-shot regression problem (i.e., few links on each tail node)

- Meta-learning (Obtain information from head-degree node and transfer it to tail-degree node)

— meta-learning
---- learning/adaptation

VLs
\-
Vﬁl """""" 03

4 \\
QT o" A 9;

Model-agnostic Meta Learning

To simulate test environment

(a) Toy network

link
dropouts

Reconstruct head-degree

Metajrain [ node embedding
" TaskTy Task T, - . . .
Support S, SupportUS prior sk local |
i d . v O Support loss model !
! h g Zanpes, IFGO) =hyll* ---»@7
© c ®—h, :
Q@ h, @Q h, . Optimization l |
uery qq uery q, '
h ®—h, f Task (qlllery) loss i
Meta-test Love | Embeddi
- mbedding
> A ~ F(,0) regression model
Task Ty TaskT, learned y0.)ity adaptation local
2 rior oca adi ;
Sport Sy [Supr S NPT, St g oo S
@ —hy @%Ex Sanpes IF@0) = bl - @ R
@_h (E)— v [ W - aeememee———"——— e ameen jradient h{(.p
; y Q®—hz 1 o il w.r.t. task loss
uery qg uery gy >
@ 2 @___ 2 f L4 flu = /0 (u, 9&)

(b) Locality-aware tasks

(c) Locality-aware meta-learning

F(v;0) = W; - 0(Wixy + b1) + b2
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Long-Tailedness: Class & Degree Perspective
Long-Tail Experts for Graph Neural Networks (LTE4G)

= Motivation: Both class and degree- longtailedness should be considered at the same time

700

600
0 500
C
@ 400
3
o300
:Lj 200

100

<

e

>

a

N AD AP

Tail

d

a) Class

O 9 O O O
v /0) Q/b‘ Q/(«) Q/b
¥ < ©

45

650
600
550
500
450

ol B
350

HH HT TH TT

c) Class Separation

Head 54

Degree persepective

T

Class perspective
_’

sy

_‘

53.7 62.6

385 411 538 534 529 576 555 563 560 60.0 59.6 584 524

2 3 4 5 6 7 8 9 10 11 12 13 14 15
a) Node degree(low—high)

56.1 41.5 43.9

42.8 31.7 36.1

0~9 10~19  20~29 30~39 40~49 50~59  60~69
b) Class index sorted by the class cardinality(high—low)

100
90
80
70
60
50
40

100
90
80
70
60
50
40
30
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Long-Tailedness: Class & Degree Perspective
Long-Tail Experts for Graph Neural Networks (LTE4G)

= |dea
« Obtain balanced subsets of nodes and assign an expert to each subset (HH,HT,TH,TT)

- Knowledge distillation between experts and class-wise students
- Distill knowledge of HH/HT experts to Head-class student & TH/TT experts to Tail-class student

P
- Pre-training Phase \ Class Prototype-based Inference Phase
z@\.. Focal LR Zovgnt === =1 Pre-training Phase
: (o0 2 E—— 1 l _G_T_ i Q O Target Node ()

P > ALTP o'.. . .
‘ I O Neghboring Nodes (%) e Obtain a Pre-trained Encoder
} Ve o i S .. ’:‘ .' .’ O  Top-k Feature Similar Nodes (S.)

B W Lkb
LSH(ud

Head

Pu/ CGIESR S
RSt s covton: [PLOT" Training Phase
4 wd ; :
TN SIS T e ... * Split nodes in a balanced manner
- e = ; S e Obtain Experts and Students
Encodke Il!'g'“ - | SR S * Using Knowledge Distillation
— egree Ranl dicti . . .
o J,,, i ST Using Head-to-Tail Learning
.; /o ] Tail L?trud- el
ﬂ- Student _"_ ET:a‘_l A . StI(E:‘lielnt
T ® Class Prototype-based Inference Phase
= B

O Train Node without label
i

s * Using Candidates for Class Prototype
L me e * Assign each test node to a student

Test Node

O
[
Tail Class & Tail Det e

> Expert —



Long-Tailedness: Class & Degree Perspective

Long-Tail Experts for Graph Neural Networks (LTE4G)

= Experiments: Datasets & Metrics

Dataset | #Nodes #Edges #Features #Classes

2,708 5,429 1,433 7

CiteSeer 3,327 4,732 3,703 6

Cora-Full 19,793 146,635 8,710 70
Dataset | Imb. class | Imb. ratio | Ly L, L, L; L; Ls Lg
3 10% 233 233 233 233 24 24 24
5% 241 241 241 241 12 12 1.2
Cora 5 10% 40.0 40.0 4.0 40 40 4.0 4.0
5% 444 444 2.2 2.2 2.2 22 22
LT 1% 540 250 116 54 24 12 05
3 10% 303 303 303 30 30 30 -
5% 31.7 317 317 16 16 16 -
CiteSeer 5 10% 66.7 6.7 67 67 67 67 -
5% 80.0 40 40 40 40 40 -
LT 1% 60.7 241 9.5 38 15 05 -
Cora-Full = 1.1% 340 189 141 109 69 48 2.6

(True Positive Rate + True Negative Rate)

1) Balanced Accuracy (bAcc) = 5

2*(Precision, *Recall,)
Precision.+Recall,

2) Macro-F1 = I_z‘l Y cec

1

3) Geometric Means (G-Means) =(].cc Sensitivity,)IC]

TP + TN
TP + FP + FN + TN

4) Accuracy (Acc) =

Predict

I S [
T

Actual



Long-Tailedness: Class & Degree Perspective
Long-Tail Experts for Graph Neural Networks (LTE4G)

= 1) Overall Performance on manual imbalanced datasets

Imb. class num: 3

Imb. class num: 5

Method Imbalance_ratio: 10% Imbalance_ratio: 5% Imbalance_ratio: 10% Imbalance_ratio: 5%

bAcc.  Macro-F1 G-Means | bAcc.  Macro-F1 G-Means | bAcc.  Macro-F1 G-Means | bAcc.  Macro-F1 G-Means

Origin 71.0+£34  70.8+3.7  82.2+22 | 61.6£35  58.6+4.3 75.9+24 | 66.8+1.1  66.9+1.4  79.4+0.7 | 57.7£52  56.1%+5.8 73.2+3.6
Over-sampling 65.5+1.8  64.5+20  785+1.2 | 61.6+34  57.0+49  75.9+23 | 58.0+0.8  56.9+1.1 73.4+0.6 | 44.6+53  40.7£56  63.5+4.1
Re-weight 72.9+27 723437  83.4+17 | 64.7+45  62.5%5.5 78.0+£3.0 | 67.5+1.8  67.3+2.2 79.9+1.2 | 59.1+1.7  56.7+2.7 74.2+1.2
SMOTE 66.4+3.8  64.7+55 79.1+2.6 | 61.6£34  57.0+4.9 75.9+23 | 61.0+26  61.1+33 75.5+1.8 | 44.6+53  40.7+5.6 63.5+4.1
Embed-SMOTE 65.5+4.2 63.4+4.7 78.6+2.8 | 59.3+55 54.2+7.4 74.3+3.7 | 57.5+4.9 55.2+5.5 73.0+3.4 | 44.3+6.9 41.0+9.0 63.2+5.5

g GraphSMOTET 71.2+24 70.2+3.0 82.3+1.6 | 65.7+1.5 63.3+2.7 78.7+1.0 | 67.2+1.8 67.2+2.4 79.7+1.2 | 58.7+2.8 58.0+2.2 73.9+1.9
O  GraphSMOTEp 70.7+1.9  70.0+2.5  82.0+13 | 64.2+40  62.5+44  77.7+27 | 67.6x1.8 66.9+2.1  80.0+1.2 | 61.6+3.0  59.9+35  75.9+21
GraphSMOTEP,eT 71.8+54  70.4+6.4 82.7+35 | 67.3+59  63.9+83 79.7+39 | 69.0+2.8  68.0+2.5 80.9+1.8 | 67.5+3.7 64.8+3.8 79.9+2.4
GraphSMOTEp,eo 734421  72.5+2.0 83.8+1.4 | 68.2+04  65.8+1.9 80.4+0.3 | 67.6+£55  65.7+5.8 79.9+3.6 | 67.2+3.4  64.6+3.5 79.7£2.2
GraphENS 62.0+3.6 58.2+4.6 76.2+2.4 | 56.5+4.7 51.4+6.9 72.4+33 | 44.8+4.0 41.3+4.2 63.7+3.1 | 34.5+29 30.3+4.1 55.4+25
Tail-GNN 63.1+35  60.4+35  76.9+24 | 54.7+44  48.0+7.6  71.1+3.1 | 55.7+x6.2 54.7+6.9  71.7+x43 | 39.2+6.9  33.6%9.5 59.2+5.6
LTE4G 73.6+2.6 73.0£25 83.9+1.7 | 70.9+3.1 69.4+25 82.1+20 | 74.2+1.8 73.9+19 84.3x1.1 | 71.9£35 70.9+36 82.8+23
Origin 46.3+25  37.2+34  64.2+19 | 43.3+12  33.1+21  62.0+1.0 | 41.1+29  37.2+37  60.2+2.4 | 29.8+14  23.4+1.6  50.6+1.2
Over-sampling 48.1+2.7  41.4+53  65.6+2.1 | 45.7+3.2  36.6+4.3 63.8+2.5 | 34.9+29  31.2+3.6  55.1+25 | 33.8+29  27.5+0.8 54.1+255
Re-weight 47.2+25  39.7+3.9 64.9+19 | 44.1+22  33.5%3.2 62.6+1.7 | 42.3+5.0  37.9+53 61.1+39 | 31.2+3.9  25.7£35 51.8+3.5
SMOTE 46.4+2.6  37.6x33  64.3+20 | 45.7+3.2  36.6+43 63.8+2.5 | 34.7+0.7  27.3%3.2  55.0£0.6 | 33.8+29  27.5+0.8 54.1+2.5

5 Embed-SMOTE 46.4+33  36.6x4.1  64.3+2.6 | 44.9+43 33558  63.2+34 | 32.9+04  25.5+1.7  53.4+03 | 20.4+03  11.2+0.5  41.4+03
&  GraphSMOTET 47.3+3.0  38.9+46  65.0+23 | 45.6+19  35.1+28  63.7+14 | 42.8+58  37.3+6.9  61.5+4.6 | 31.1+4.6  26.0+53  51.7+4.0
é GraphSMOTEp 47.2+34  38.6+59  64.9+26 | 45.1+44  34.9+6.1  63.3+33 | 41.8+29  35.3+29  60.8+2.3 | 35.3+4.6  28.3+4.6  55.3+4.0
GraphSMOTEp,eT 45.5+3.7  37.3+45  63.6+29 | 41.2+28 31.0+26  60.3+23 | 46.3+49  42.9+49  64.2+38 | 34.1+7.7 28.6+84  54.1+6.8
GraphSMOTEp,eO 45.2+19  38.2+15  63.4+14 | 40.9+13  30.4+138 60.1+1.1 | 46.4+43  43.3+46  64.3+34 | 34.0+7.7  28.3+8.2 54.0+6.9
GraphENS 46.7+2.4  39.2+39  64.6+1.8 | 44.2+12  354+19  62.7+1.0 | 28.9+50  23.6+6.2  49.6+4.6 | 25.4+2.0 20.4+4.1  46.4+2.0
Tail-GNN 44.2+1.6  34.3+25 62.7+1.3 | 41.8+0.7 30.1+26 60.8+0.6 | 32.1+4.7  26.4+6.1 52.6+4.2 | 27.8+50  21.5+4.7 48.6+4.6
LTE4G 51.0+1.6 50.1+0.7 67.8+1.2 | 50.5+0.8 48.6+1.2 67.5+0.6 | 49.6+23 47.0+3.7 66.8+1.7 | 46.7+0.6 44.4+4.3 64.5+4.7
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Long-Tailedness: Class & Degree Perspective
Long-Tail Experts for Graph Neural Networks (LTE4G)

= 2) Overall Performance on manual LT & natural datasets

Method Cora-LT CiteSeer-LT

bAcc.  Macro-F1 G-Means | bAcc.  Macro-F1 G-Means
Origin 63.3+14  58.4+14  77.1+09 | 48.3+18 41.7+14  65.8+14
Over-sampling 65.9+25  63.3+2.38 78.8+1.7 | 48.7+1.7  42.2+19 66.1+1.3
Re-weight 64.3+0.2 61.0+0.7 77.8+0.2 50.3+2.5 449423 67.3+£1.9
SMOTE 64.1+0.3  60.8+0.2 77.6+0.2 | 48.5+0.7  42.1+0.5 65.9+0.6
Embed-SMOTE 61.9+1.0 58.3+0.9 76.1+0.7 | 48.8+25  42.3+2.0 66.2+1.9
GraphSMOTE T 65.2+2.2  62.3+29  78.4+14 | 50.8+1.8 45.6+1.8  67.7+13
GraphSMOTE 65.8+1.6  62.9+20  78.8+1.1 | 51.0+1.2  45.9+08  67.8+0.9
GraphSMOTEP,eT 65.8+14  63.5+2.0 78.840.9 | 47.8+19  42.4+1.38 65.4+1.4
GraphSMOTEp,e0 | 66.1£0.7  63.5+0.5 78.9+0.5 | 48.1+1.9 424+19 65.6+1.4
GraphENS 70.0+£1.2  66.8+1.1 81.6+0.8 | 56.0+1.1  50.9+1.1  71.4+0.8
Tail-GNN 63.2+2.0 57.6x1.8 77.0£1.3 | 53.1+0.9  48.2+1.4 69.4+0.7
LTE4G 72.6+1.4 72.4+15 83.3+09 | 60.6+1.7 55.0+1.9 74.7+1.2

Cora-Full
YcEoe bAcc.  Macro-F1 G-Means Acc.

Origin 52.0£1.0  52.5+0.8  71.9+0.7  60.5+0.2
Over-sampling 52.0+£0.7  52.6+0.6  71.9+0.5  60.7+0.1
Re-weight 52.1+0.9  52.6+0.7  72.0+0.6  60.7+0.1
SMOTE 52.2+0.7  52.4+0.7 72.0+£0.5 60.6+0.4
Embed-SMOTE 52.3+0.7  53.8+0.7  72.1+0.5  62.6+0.5
GraphSMOTET 51.9+0.6  52.4+04  71.8+04  60.6+0.2
GraphSMOTEp 52.3+1.0  52.5+0.8  72.1+0.7  60.5+0.3
GraphSMOTE e | 48.0£2.1 48422  69.0+15  56.8+19
GraphSMOTEprep | 47.0+25  47.2+25  68.3+18  55.9+2.1
GraphENS 52.9+0.5 53.7+03  72.5+03 63.4+0.4
Tail-GNN OOM OOM OOM OOM

LTE4G 56.3+0.5 55.2+0.2 74.8+03  62.6+0.2

LTE4G outperforms SOTA in both manual and natural settings
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Long-Tailedness: Class & Degree Perspective
Long-Tail Experts for Graph Neural Networks (LTE4G)

= 3) Performance on each class, degree and joint consideration

Head Tail Tail Head -
*- Wra e R P i
+0.70 3001 —k— LTE4G
GraphENS L0.65 8001
2 = +0.65 250 e o GrgPhSmoteT
l T 1 200+ S —e— Origin 556 600 -
1 % LTE4G-UB . 150 4001 -* LTE4G-UB
|~ TE4G \ 10.55 100 r0.55 —k— LTE4G
GraphENS D ' — 200 ~@&— GraphENS
|1 —®—- GraphSmote T 0.50 50 - 0.50 —= Gr_ap.hSmoteT
—e— Origin .\\‘ —e— Origin
] - 0- 0 .
0 °) 0 0 ©) o o 2 3 4 5 6 7 8 10 9 11 12 14 13 HH HT TH 1T
Q/ /\’ /'1, /O’ /b‘ /‘) /b
Q Q Q Q Q Q
N v & O ) ©
Class Degree Class Separation

LTE4AG performs well in terms of class and degree + class and degree jointly
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Long-Tailedness: Class & Degree Perspective

Long-Tail Experts for Graph Neural Networks (LTE4G)

= 4) Ablations on each component of LTE4G & balanced split of LTE4G

Components Cora-5%(Imb Class 3) Cora-5%(Imb Class 5)

# | C D KD T2H H2T | bAcc. Macro-F1 G-Means | bAcc. Macro-F1 G-Means Balanced Split Cora-LT Cora-Full
(@) | - 70.6+3.2  69.0+2.8  82.0+2.1 | 71.3+46  70.2+46  82.4+3.0 Class Degree | bAcc.  Macro-F1 G-Means | bAcc.  Macro-F1 G-Means
(b) ‘ 50.641.2  44.8+18  68.1£0.9 | 43.5+28  40.1x45  62.742.2 X X 65.7+14  61.6+15 787409 | 53.2209 54109  72.8+0.6
(c) | v v 59.9+3.3 59.0+3.6 74.8+2.3 55.6+4.6 56.2+0.5 71.7+3.3 X v, 63.0+1.4 58.7+1.6 76.9+1.0 53.3+0.9 54.0+0.9 72.840.6
@@|[v v y 70.6+3.4  69.3+28  81.9+22 | 71.1x61  69.8+6.1  82.2+0.4 ; X 723409  72.0+41.0  83.040.6 | 55.4+09 54.6+06  74.2+06
(e) | v v y ; 69.4+3.7  67.9+34  81.2+24 | 70.3x44  69.2+44  81.7+29 , 79.6114 72.4+15 83.3:09 | 56.3105 55.2102  74.8103
)| v v . , 70.9+3.1 69.4+2.5 82.1+2.0 | 71.9+3.5 70.9+3.6 82.8+2.3

= 5) Complexity analysis

CiteSeer-10% (Imb. class 3) il Cora-Full
o =-@= LTE4G =@= LTE4G
] =@= GraphSMOTE_O 58 1 =@= GraphSMOTE_O . . . . .

55 Blindly increasing the number of parameters is not beneficial
3 56 M . . .
%50' olp—"" .______’.' - -> Important to assign parameters In the rlght place where

1 o] they are needed

40+ 24

351+ . . 50 L= . .

Reduced Original Increased  Reduced Original Increased

60 64 160 60 64 300

Node embedding dimension (D)
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This talk

= How to effectively train GNNs?

« Robustness of GNN
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Adversarial Examples

= Assume a neural network that performs at human level accuracy

= Given a data point x, it is possible to build x" (an adversarial example) around x such that the neural netw
ork makes nearly 100% error

= [n many cases, x' is so similar to x that a human observer cannot tell the difference between x’ and x
« Imperceptible noise changes the prediction

Carefully calculated noise Adversarial example

Classified as panda Small adversarial noise Classified as gibbon

!/

X € X

Find x’ satisfying ||x’ — x|| < Ast. C(x") #y
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Implications of Adversarial Examples

= The existence of adversarial examples prevents the reliable deployment of deep learning models to the
real world

« Adversaries may try to actively hack the deep learning models.
« The model performance can become much worse than we expect.

= Deep learning models are often not robust
- In fact, it is an active area of research to make these models robust against adversarial examples

How about GNNs? Are they robust to adversarial examples?

9



(Figure credit) Graph Neural Networks: Models and Applications, AAAI 2021 Tutorial

Adversarial Attacks on GNN
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Why do we care about robust GNN?

= Adversaries are very common in application scenarios, e.g. search engines, or recommender systems
 Financial Systems
« Credit Card Fraud Detection
- Recommender Systems
« Social Recommendation
* Product Recommendation

« Search engines

= These adversaries will exploit any vulnerabilities exposed
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(Figure credit) Graph Neural Networks: Models and Applications, AAAI 2021 Tutorial

Perturbation Type

Modifying Features

Deleting an edge Node Injection



(Figure credit) Graph Neural Networks: Models and Applications, AAAI 2021 Tutorial

Evasion & Poisoning Attack

@ Train @ Train @ Test
® Test
Trained GNN ,
Trained GNN
Evasion Attack Poisoning Attack
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(Figure credit) Graph Neural Networks: Models and Applications, AAAI 2021 Tutorial

Targeted & Non-Targeted Attack

Targeted Attack Non-Targeted Attack

~ -
e —— e ="

@ Target Node
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Direct & Indirect Attack

(Figure credit) https://www.cs.cit.tum.de/fileadmin/w00cfj/daml/nettack/kdd_talk.pdf

Target node

Attacker node

= Target node t € VV: node whose classification label we want to change

= Attacker nodes S < V: nodes the attacker can modify

Direct attack (S = {t})

* Modify the
target’s features

 Add connections
to the target

* Remove connections
from the target

Example

Change website
content

Buy likes/
followers

Unfollow
untrusted users

Indirect attack (t € S)

Modify the
attackers’ features

Add connections
to the attackers

Remove connections
from the attackers

H\H
-

lo @ 8
ey

—

4 Pe

E| Attacker node

\/'/H
H

Example

Hijack friends
of target

g Create a link/

spam farm
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Objective for Attacker

= Maximize: Change of target node label prediction

= Subject to: Graph manipulation is small (imperceptible)
- If graph manipulation is too large, it will easily be detected
« Successful attacks should change the target prediction with “unnoticeably-small” graph manipulation

Perform small graph Learn GCN Change in predicted
manipulation model class label

Target node

Class1 Class2 Class 3
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(Figure credit) https://www.cs.cit.tum.de/fileadmin/w00cfj/daml/nettack/kdd_talk.pdf

Poisoning Attack on Node Classification (Nettack)

| PR

arg max max lo Z — log Z;
gA F' X" c#co1d & &4v,c old

where Z* = fg+(A',X") = softmax (A’ ReLU(A'’X'W )W @),
with 6* = arg meinL (6; A", X"

A € {0,1}V*N: original adjacency matrix I vIN
X € {0,1}¥*P: (binary) node attributes S.t. (A ’ X ) ~ (A, X)

A': modified structure
X': modified features
v :target node



(Figure credit) https://www.cs.cit.tum.de/fileadmin/w00cfj/daml/nettack/kdd_talk.pdf

Poisoning Attack on Node Classification (Nettack)

11 s a\
] - | ] - \
argmax max logZ; . —logZ; . /

A" X" c#coiq Message passing

where Z* = fo«(A',X") = softmax (A’ ReLU(A'X'W D)W@),
with 6* = arg mgnL (6;A', X") (after re-train)
c.f. £L(6; A, X): evasion

NXN. . . . . a“ H HH 14
A€ {O,1}NXD: orfglnal adjacency. matrix s t. (AI, XI) ~ (A, X) Unnotlceablllty
X € {0,1}V*": (binary) node attributes :
, e constraint
A": modified structure
X': modified features
v :target node
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Adversarial Defense in GNN

= Graph Purification-based Approach
- ProGNN (KDD 2020)

@ clean
0 @ attacked

GNN

Pre-processing

= Attention-based Approach
- RGCN (KDD 2019), PA-GNN (WSDM 2020)

‘ clean
> é @ attacked
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Defense: Graph Purify-based Approach

Graph Structure Learning for Robust Graph Neural Network (ProGNN)

= |dea: Preserve intrinsic properties of real-world graphs

« Low-rank, Sparsity, Feature smoothness

Growth Rate(%)

-»- Cora ~ Valn g 0.04
{ —%- Citeseer s T Y
e %,/ _
*— Polblogs Xext” ~ = 0.5
/, >
X D 1.0
X ]
/ »x ©
X=X » x> < _15
x s 5 L
X "’,P--P’ x 0
] g T x D —20

1 > full

1 PA (@]

] pik & Q25
[ o~
I g~
1, -3.0

w
0 5 10 15 20 25
Perturbation Rate(%)
(b) Rank Growth
Low-rank

L‘\\‘\\ —-»- Remove Normal Edge
T —&- Remove Adversary
) ,\‘»—_____’_ _____ -
T~
0 50 100 150 200 250
Number of Removed Edges
(c) Rank Decrease Rate

o e e o
o o - —_
» oo o N

Density Ditribution
2

0

Normal Edges

10 20 30 40

Feature smoothness

Adversarial Edges

50
Feature Difference Between Connected Nodes
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Defense: Graph Purify-based Approach
Graph Structure Learning for Robust Graph Neural Network (ProGNN)

= Approach

. Add loss to ensure the graph is low-rank and sparse (S: the clean adjacent matrix we would like to learn)
. 2 T S _ z:rank(S) _
argmin Lo = ||A = §||% + al|S|ly + Bl[S]]«, s.£.,S=3S ISl = 2,2y o

SeS
- Add loss to penalize rapid changes in features between adjacent nodes:
N
. A A 1 i j
argmin L = Lo+ A-Ls =L+ Atr(XTLX), s.t.,S=S"T Lo =tr(XTLX) = - Z Sij( Xi % )2

SeS 2 i,j=1 Vd; \/E

- Jointly learn the desired properties of graphs and the GNN model:

argmin L = Lo+ ALs +yLGNN
SesS, 0

= ||A = S|% + «l|S|l1 + BIISIlx + y LoNN (6,8, X, Y1) + Atr(XTLX)
s.t. S=ST,
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Defense: Attention-based Approach
Robust Graph Convolutional Networks Against Adversarial Attacks (RGCN)

= Motivation: Attacked nodes may have high uncertainty = Give lower attention score to reduce their impact

= Ildea: Adopt Gaussian distribution as the node representations hgl) = N(pgl),diag(ag.l)))

n 1 (I)
h Z h'

1 )
ne(i) - = - ~N Z ———H., dlag Z p po G(l) 026 -e-Cora
. . D D . ~ ~ J D D . J Citeseer
jene(i) L,ilYj],j jene(i) 1/Di,iDj,j jene(i) ~ L] 24| ~&Pubmed

= Variance-based attention mechanism
« Assign different weights to node neighborhoods according to their variances

o
N
=

=) o
o o N
© ) N
Q T T

Average variance

o
-
o

- Attacked nodes have larger variances, give them small attention weights

- Reduce influence of adversarial changes 014, : 4 6 8 10

Number of Perturbations Per Node

(D )
(hj O a; )

Oy N
" et DD Lregr = ) KL (N diag({")IIN(.D)

i=1
)] ()
. = —VO.
%; exp(=y J ) Enforce Gaussian in the first layer
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Defense: Attention-based Approach
Robust Graph Neural Network Against Poisoning Attacks via Transfer Learning (PA-GNN)

= Motivation
« Only relying on perturbed graph to learn attention coefficients is not enough

« We should exploit information from clean graphs

o M wwm wem e e ww wn m wm G G mwm wew mew mm e

= Assumption: There are clean graphs from similar domain ‘Meta- Ty :
- Facebook & Twitter : Optimization .’.\ :
( 1 T T T ) ] ]
 Yelp & Foursquare | : : —9 | | .
: Gl | : :A/ : : :
I I ! I I 1
' Clean | Perturb : . Train | !
iGraphs i . | ' : ! !
I I I I I |
G | : {vl : ; '
| M@: N/ : :
_____________ 1 I I I
L :
‘Robust GNN ' Poisoned \

o o o o -

: |
1 : I I
] . |
. . Fine-tune . Graph & | < e (2
I ‘\‘ I I | .
: : ' g | 4: example node - -: adversarial edge
I . : :

\
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This talk

= How to learn graph representation in various types of graphs?

—GNNsfor-Homegeneous-Graph
« GNNs for Multi-aspect Graph

« GNNs for Multi-relational Graph

= How to effectively train GNNs?
« Self-supervised learning

« Alleviating Long-tail problem
« Robustness of GNN
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Thank you

= Contact: cv.park@kaist.ac.kr

= Lab homepage: http://dsail.kaist.ac.kr
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