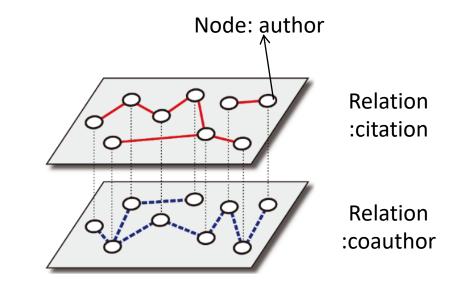

Unsupervised Attributed Multiplex Network Embedding

AAAI 2020 Presenter: Chanyoung Park

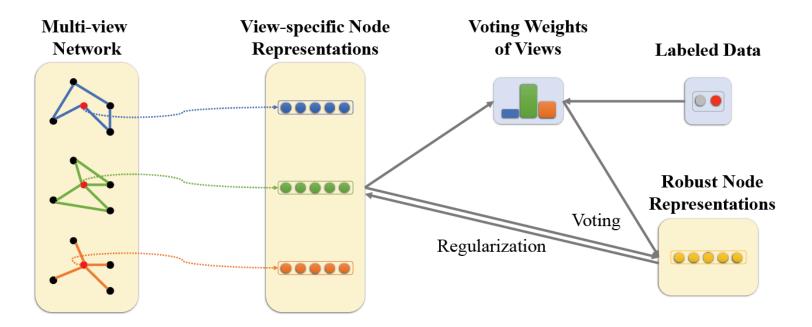

Network Embedding

- Find a low-dimensional vector representation of each node in a graph while preserving t he network structure
 - Intuition: Similar nodes in a graph have similar vector representations

Multiplex Network (Multi-view network)

- A single node type, multiple edge types
 - Example 1: Publication network
 - Relationship between papers
 - Citation, share authors, share keywords
 - Relationship between authors
 - Co-author, co-advisor, co-citation
 - Example 2: Movie database
 - Relationship between movies
 - Common director, common actor
 - Example 3: Social network
 - Relationship between users
 - Family member, school friend, co-worker
 - Example 4: E-commerce
 - Relationship between items
 - Also-viewed, also-bought, bought-together

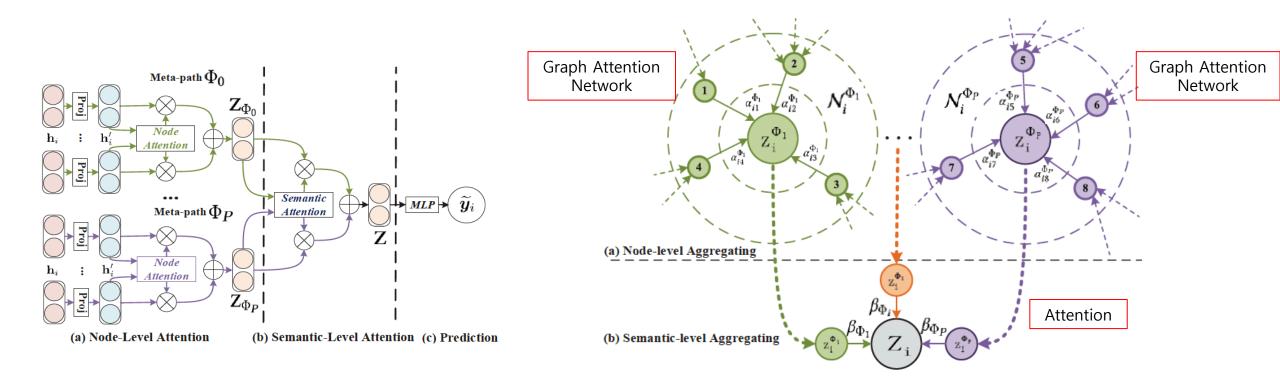
Motivation


- Although different types of relations can independently form different graphs, these gra phs are related
 - Mutually help each other on various downstream tasks
- Example: Publication network
 - Inferring the topic of a paper only from its citations is difficult
 - But, also knowing other papers written by the same authors will help predict its topic
 - Authors usually work on a specific research topic
 - Furthermore, if node attributes are given, it becomes even easier
 - e.g., Abstract of the papers

This work

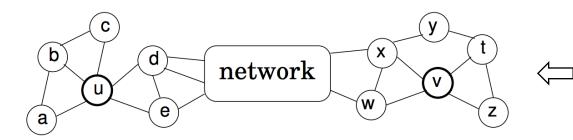
- Goal: Learn node representations in multiplex networks
 - Capture the interactions between multiple relation types
 - Consider node attributes if they are given
- Apply the learned representations for various downstream tasks
 - Node classification, node clustering, similarity search

Network Structure-based Methods


• Qu et al, 2017, Zhang et al, 2018, Chu et al, 2019

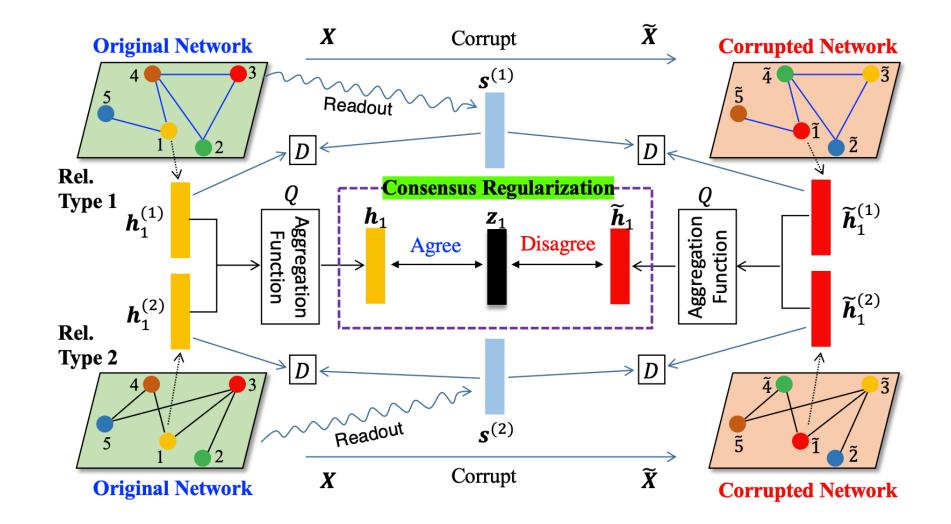
Do not consider node attributes + depend on label information

GNN-based methods


• Apply GCN (Ma et al, 2019) or GAT (Wang et al, 2019) to a multiplex network

Do not consider the global information (neighborhood aggregation) + depend on label information

Limitations of Previous Work

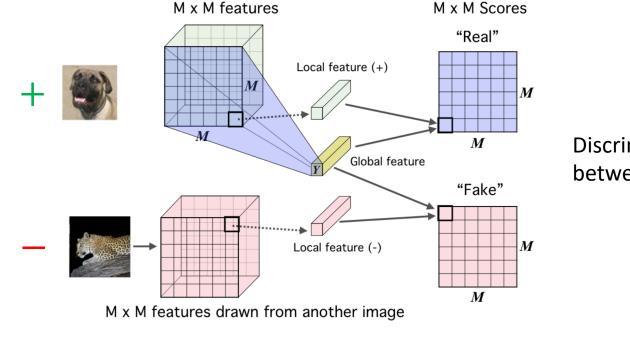

- 1. Ignore node attributes information
- 2. Rely on node labels
 - However, labels are not always given in the real world
- 3. Cannot capture the global property

u and v are globally similar

u and v should have similar embeddings because they share similar structures

Proposed Framework : Deep Multiplex Graph Infomax (DMGI)

Background: Mutual Information (MI)


- Measures the amount of information that two variables share
- If X and Y are independent, then $P_{XY} = P_X P_Y \rightarrow$ in this case, MI = 0

$$egin{aligned} \mathcal{I}(X;Y) &= \mathbb{E}_{P_{XY}}\left[\lograc{P_{XY}}{P_XP_Y}
ight] \ &= D_{ ext{KL}}(P_{XY}||P_XP_Y) \end{aligned}$$

- High MI? \rightarrow One variable is always indicative of the other variable
- Recently, scalable estimation of mutual information was made both possible and practic al through Mutual Information Neural Estimation (MINE) [ICML18]

Deep Infomax (Hjelm et al, 2019)

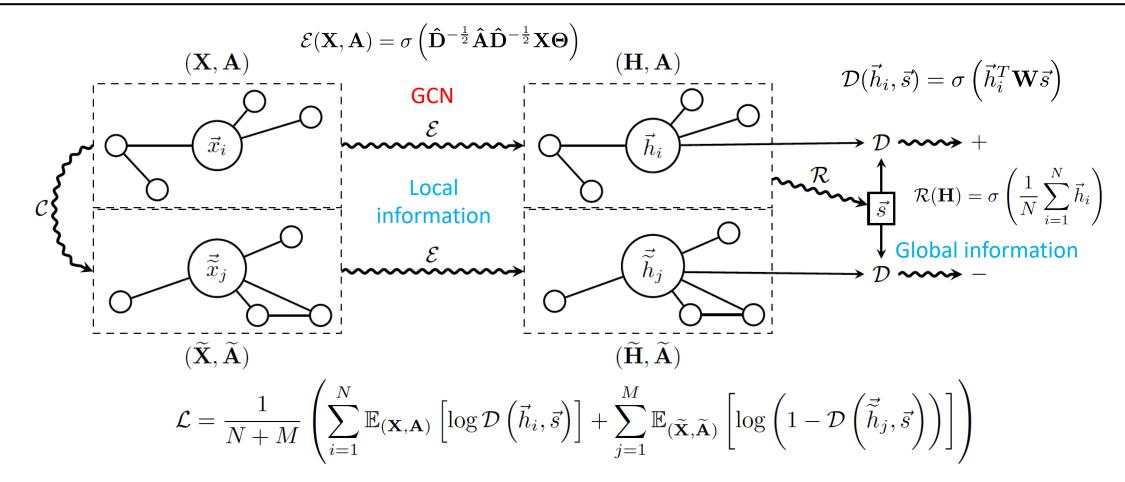
- Unsupervised representation learning method for image data
- Intuition: Maximize mutual information (MI) between local patches and the global representation of an image

Discriminator tries to discriminate between "Real" and "Fake"

Deep Infomax (Hjelm et al, 2019)

Deep Graph Infomax (Velickovic et al, 2019)

- Deep Graph Infomax (DGI) applies Deep Infomax on graph domain
- Unsupervised graph representation learning method that considers node features
- Notations


 $\mathbf{X} = \{ec{x}_1, ec{x}_2, \dots, ec{x}_N\}$: A set of node features (N: number of nodes) $ec{x}_i \in \mathbb{R}^F$

 $\mathbf{A} \in \mathbb{R}^{N imes N}$: Adjacency matrix

- Learn a graph convolutional encoder $\mathcal{E}(\mathbf{X}, \mathbf{A}) = \mathbf{H} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\} \ \vec{h}_i \in \mathbb{R}^{F'}$
 - Generates node representations by **repeated aggregation over local node neighborhoods**
 - \vec{h}_i summarizes a patch of the graph centered around node *i* (\approx patch representation)

Analogy: Local patch representation in an image == Node representation in a graph

Deep Graph Infomax (Velickovic et al, 2019)

Maximizes the mutual information between the local patches and the graph-level global representation

Why Deep Graph Infomax?

- Considers node attributes
 - Graph convolution network based
- Does not rely on node labels
 - Unsupervised learning
- Captures global information
 - Mutual information maximizataion

How can we apply DGI on attributed multiplex networks?

Relation-specific Node Embedding

• Obtain relation specific node embedding for every node

$$g_r(\mathbf{X}, \mathbf{A}^{(r)} | \mathbf{W}^{(r)}) = \mathbf{H}^{(r)} = \sigma \left(\hat{\mathbf{D}}_r^{-\frac{1}{2}} \hat{\mathbf{A}}^{(r)} \hat{\mathbf{D}}_r^{-\frac{1}{2}} \mathbf{X} \mathbf{W}^{(r)} \right) \quad \hat{\mathbf{A}}^{(r)} = \mathbf{A}^{(r)} + w \mathbf{I}_n, \, \hat{D}_{ii} = \sum_j \hat{A}_{ij}$$

$$\mathbf{GCN}$$

$$\mathbf{A}^{(r)}: \text{Adjacency matrix w.r.t. relation } r$$

$$\mathbf{H}^{(r)}: \text{Node embedding matrix w.r.t. relation } r$$

• Obtain relation specific graph-level representation ($s^{(r)}$: summary vector w.r.t relation r)

$$\mathcal{D}\left(\mathbf{h}_{i}^{(r)},\mathbf{s}^{(r)}\right) = \sigma(\mathbf{h}_{i}^{(r)T}\mathbf{M}^{(r)}\mathbf{s}^{(r)}) \qquad \mathbf{s}^{(r)} = \mathsf{Readout}(\mathbf{H}^{(r)}) = \sigma\left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{h}_{i}^{(r)}\right)$$

However, this cannot capture the interactions among different relation types

Learning Consensus Node Embedding

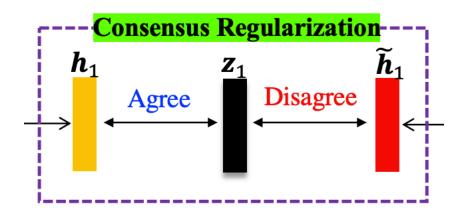
- How to combine the relation specific embeddings into a single consensus embedding by considering the interactions among different relation types?
 - 1. Consensus embedding regularizer
 - 2. Universal discriminator

Consensus Embedding Regularizer

• Step 1: Aggregate node embeddings from multiple relation types

$$\mathcal{Q}\left(\{\mathbf{H}^{(r)} \mid r \in \mathcal{R}\}\right)$$

- How can we design the aggregation function Q?
 - 1. Simple summation + average → **Treats all the relation types equivalently**


$$\mathcal{Q}\left(\{\mathbf{H}^{(r)} \mid r \in \mathcal{R}\}\right) = \mathbf{H} = \frac{1}{|\mathcal{R}|} \sum_{r \in \mathcal{R}} \mathbf{H}^{(r)}$$

2. Adopt attention mechanism → **Consider the importance of different relation types**

$$\mathcal{Q}\left(\{\mathbf{h}^{(r)} \mid r \in \mathcal{R}\}\right) = \mathbf{h}_i = \sum_{r \in \mathcal{R}} a_i^{(r)} \mathbf{h}^{(r)}$$
$$a_i^{(r)} = \frac{\exp\left(\mathbf{q}^{(r)} \cdot \mathbf{h}_i^{\text{Concat}}\right)}{\sum_{r' \in \mathcal{R}} \exp\left(\mathbf{q}^{(r')} \cdot \mathbf{h}_i^{\text{Concat}}\right)}$$

Consensus Embedding Regularizer

- Step 2: Introduce a consensus node embedding matrix $Z \in \mathbb{R}^{n \times d}$
 - Z should unify all the relation-specific node embeddings
 - 1) Maximize the agreement with the set of "real" node embeddings
 - 2) Maximize the disagreement with the "fake" node embeddings

$$\ell_{cs} = \left[\mathbf{Z} - \mathcal{Q} \left(\{ \mathbf{H}^{(r)} \mid r \in \mathcal{R} \}
ight)
ight]^2 - \left[\mathbf{Z} - \mathcal{Q} \left(\{ \mathbf{ ilde{H}}^{(r)} \mid r \in \mathcal{R} \}
ight)
ight]^2$$

Universal Discriminator

- Recall the discriminator D(h, s) that discriminates ...
 - whether $m{h}$ is from the original graph that can be summarized as $m{s}$

$$\mathcal{D}\left(\mathbf{h}_{i}^{(r)}, \mathbf{s}^{(r)}\right) = \sigma(\mathbf{h}_{i}^{(r)T}\mathbf{M}^{(r)}\mathbf{s}^{(r)})$$
Score matrix w.r.t.
$$\mathbf{s}^{(r)}$$

Probability that h_i is from the real graph

Probability that $\widetilde{h_j}$ is from the fake graph

• Learn a universal discriminator that is capable of scoring the real pairs higher than the fake pairs **regardless of the relation types**

 $\mathcal{L}^{(r)} = \sum_{v_i \in \mathcal{V}}^{n} \log \mathcal{D}\left(\mathbf{h}_i^{(r)}, \mathbf{s}^{(r)}\right) + \sum_{j=1}^{n} \log\left(1 - \mathcal{D}\left(\tilde{\mathbf{h}}_j^{(r)}, \mathbf{s}^{(r)}\right)\right)$

$$\mathbf{M} = \mathbf{M}^{(1)} = \mathbf{M}^{(2)} = ... = \mathbf{M}^{(|\mathcal{R}|)}$$

Facilitates the joint modeling of different relation types together with the consensus regularization

Final Objective

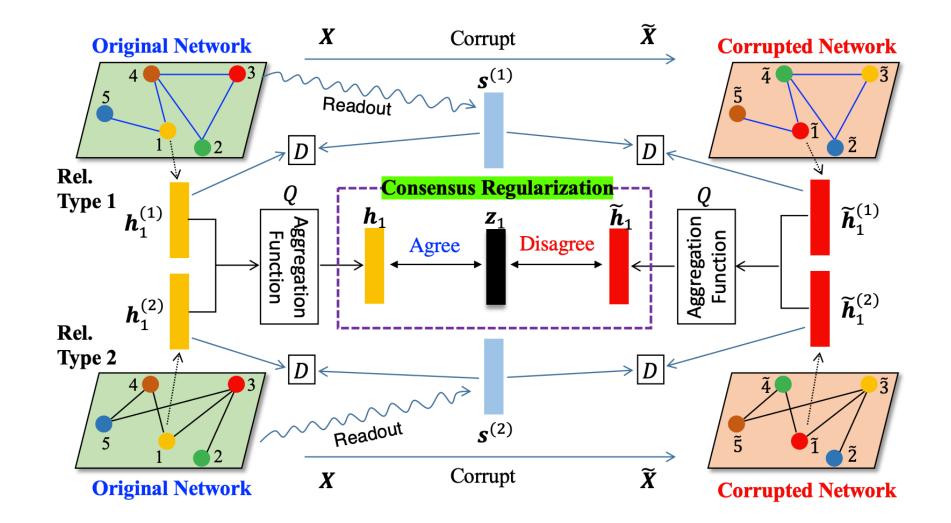
$$\mathcal{L} = \sum_{r \in \mathcal{R}} \mathcal{L}^{(r)} + \alpha \ell_{cs} + \beta ||\Theta||^2$$

- $L^{(r)}$: Relation-specific loss
- *l_{cs}*: Consensus regularization framework
- α : Regularization coefficient

$$\mathcal{L}^{(r)} = \sum_{v_i \in \mathcal{V}}^n \log \mathcal{D}\left(\mathbf{h}_i^{(r)}, \mathbf{s}^{(r)}\right) + \sum_{j=1}^n \log\left(1 - \mathcal{D}\left(\mathbf{\tilde{h}}_j^{(r)}, \mathbf{s}^{(r)}\right)\right)$$
$$\ell_{cs} = \left[\mathbf{Z} - \mathcal{Q}\left(\{\mathbf{H}^{(r)} \mid r \in \mathcal{R}\}\right)\right]^2 - \left[\mathbf{Z} - \mathcal{Q}\left(\{\mathbf{\tilde{H}}^{(r)} \mid r \in \mathcal{R}\}\right)\right]^2$$

Extension to Semi-supervised Model

- DMGI is trained in a **fully unsupervised manner**
- However, in reality, nodes are sometimes associated with label information, which can guide the training of node embeddings
- Easily extendable to semi-supervised model


$$\ell_{\sup} = -\frac{1}{|\mathcal{Y}_L|} \sum_{l \in \mathcal{Y}_L} \sum_{i=1}^c Y_{li} \ln \hat{Y}_{li}$$

 $\hat{Y} = \operatorname{softmax}(f(\mathbf{Z}))$

Z: Consensus embedding *f*(): Logistic regression classifier

$$\mathcal{L} = \sum_{r \in \mathcal{R}} \mathcal{L}^{(r)} + \alpha \ell_{cs} + \beta ||\Theta|| + \gamma \ell_{sup}$$

Proposed Framework : Deep Multiplex Graph Infomax (DMGI)

Experiments

• Dataset

	Relations (A-B)	Num. A	Num. B	Num. A-B	Relation type	Num. relations	Num. node attributes	Num. labeled data	Num. classes
ACM	Paper- <u>A</u> uthor Paper-Subject	3,025 3,025	5,835 56	9,744 3,025	<u>P-A-P</u> <u>P-S-P</u>	29,281 2,210,761	1,830 (Paper abstract)	600	3
IMDB	<u>M</u> ovie- <u>A</u> ctor <u>M</u> ovie- <u>D</u> irector	3,550 3,550	4,441 1,726	10,650 3,550	$\frac{\underline{M}-\underline{A}-\underline{M}}{\underline{M}-\underline{D}-\underline{M}}$	66,428 13,788	1,007 (Movie plot)	300	3
DBLP	Paper-Author Paper-Paper Author-Term	7,907 7,907 1,960	1,960 7,907 1,975	14,238 10,522 57,269	$\underline{\underline{P}}-\underline{\underline{A}}-\underline{\underline{P}}\\ \underline{\underline{P}}-\underline{\underline{P}}-\underline{\underline{P}}\\ \underline{\underline{P}}-\underline{\underline{A}}-\underline{\underline{T}}-\underline{\underline{A}}-\underline{\underline{P}}$	144,783 90,145 57,137,515	2,000 (Paper abstract)	80	4
Amazon	Item-Item	7,621	7,621	38,514 45,446 9,783	Also-view Also-bought Bought-together	266,237 1,104,257 16,305	2,000 (Item description)	80	4

Table 1: Statistics of the datasets. The node attributes are bag-of-words of text associated with each node.

Competitors

Table 2: Properties of the compared methods (*Mult.*: Multiplexity, *Attr*: Attribute, *Unsup*: Unsupervised, *Glo*: Global).

	Mult.	Attr.	Unsup.	Glo.
Dw/n2v	X	X	 Image: A second s	X
GCN/GAT	X	 Image: A set of the set of the	×	X
DGI	×	 Image: A second s	 Image: A set of the set of the	 Image: A second s
ANRL	X	 Image: A second s	 Image: A set of the set of the	1
CAN	X	 Image: A second s	 Image: A set of the set of the	X
DGCN	X	 Image: A second s	×	1
CMNA	 Image: A set of the set of the	X	 Image: A set of the set of the	
MNE	 Image: A set of the set of the	X	 Image: A set of the set of the	X
mGCN	 Image: A second s		 Image: A set of the set of the	X
HAN	 Image: A second s	1	×	X
DMGI	 Image: A second s	1	 Image: A second s	 Image: A start of the start of

Evaluation Results

	A	CM	IM	DB	DF	BLP	Am	azon			CM	I IM	סח	DB	ΙD	A ma	700
Method	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5							LL	Ama	
		I		I						MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1
Deepwalk	0.310	0.710	0.117	0.490	0.348	0.629	0.083	0.726	Deepwalk	0.739	0.748	0.532	0.550	0.533	0.537	0.663	0.671
node2vec	0.309	0.710	0.123	0.487	0.382	0.629	0.074	0.738	node2vec	0.739	0.749	0.532	0.550	0.533	0.547	0.662	0.669
GCN/GAT	0.671	0.867	0.176	0.565	0.465	0.724	0.287	0.624	GCN/GAT	0.869	0.749	0.555	0.550	0.343	0.347	0.646	0.649
DGI	0.640	0.889	0.182	0.578	0.551	0.786	0.007	0.558	DGI	0.809	0.870	0.598	0.606	0.723	0.720	0.040	0.418
ANRL	0.515	0.814	0.163	0.527	0.332	0.720	0.166	0.763	ANRL	0.819	0.820	0.573	0.576	0.770	0.699	0.692	0.690
CAN	0.504	0.836	0.074	0.544	0.323	0.792	0.001	0.537	CAN	0.590	0.636	0.577	0.588	0.702	0.694	0.498	0.499
DGCN	0.691	0.690	0.143	0.179	0.462	0.491	0.143	0.194	DGCN	0.888	0.888	0.582	0.592	0.707	0.698	0.478	0.509
CMNA	0.498	0.363	0.152	0.069	0.420	0.511	0.070	0.435	CMNA	0.782	0.788	0.549	0.566	0.566	0.561	0.657	0.665
MNE	0.545	0.791	0.013	0.482	0.136	0.711	0.001	0.395	MNE	0.792	0.797	0.552	0.574	0.566	0.562	0.556	0.567
mGCN	0.668	0.873	0.183	0.550	0.468	0.726	0.301	0.630	mGCN	0.858	0.860	0.623	0.630	0.725	0.713	0.660	0.661
HAN	0.658	0.872	0.164	0.561	0.472	0.779	0.029	0.495	HAN	0.878	0.879	0.599	0.607	0.716	0.708	0.501	0.509
DMGI DMGI _{attn}	0.687 0.702	0.898 0.901	0.196 0.185	0.605 0.586	0.409 0.554	0.766 0.798	0.425 0.412	0.816 0.825	DMGI DMGI _{attn}	0.898 0.887	0.898 0.887	0.648 0.602	0.648 0.606	0.771 0.778	0.766 0.770	0.746 0.758	0.748 0.758

Node classification (Supervised task)

Clustering & Similarity Search (Unsupervised task)

DMGI outperforms all the state-of-the-art baselines not only on the unsupervised tasks, but also the supervised task

(although the improvement is more significant in the unsupervised task as expected)

Evaluation Results

Method	AC	CM	IM	DB	DE	BLP	Am	azon		AC	M
	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5		MaF1	MiF
Deepwalk node2vec GCN/GAT	0.310 0.309 0.671	0.710 0.710 0.867	0.117 0.123 0.176	0.490 0.487 0.565	0.348 0.382 0.465	0.629 0.629 0.724	0.083 0.074 0.287	0.726 0.738 0.624	Deepwalk node2vec	0.739	0.74
DGI	0.640	0.889	0.182	0.578	0.551	0.786	0.007	0.558	GCN/GAT DGI	0.869	0.87
ANRL CAN DGCN	0.515 0.504 0.691	0.814 0.836 0.690	0.163 0.074 0.143	0.527 0.544 0.179	0.332 0.323 0.462	0.720 0.792 0.491	0.166 0.001 0.143	0.763 0.537 0.194	ANRL CAN DGCN	0.819 0.590 0.888	0.82 0.63 0.88
CMNA MNE mGCN HAN	0.498 0.545 0.668 0.658	0.363 0.791 0.873 0.872	0.152 0.013 0.183 0.164	0.069 0.482 0.550 0.561	0.420 0.136 0.468 0.472	0.511 0.711 0.726 0.779	0.070 0.001 0.301 0.029	0.435 0.395 0.630 0.495	CMNA MNE mGCN HAN	$ \begin{array}{c} 0.782\\ 0.792\\ 0.858\\ 0.878\end{array} $	0.78 0.79 0.86 0.87
DMGI DMGI _{attn}	0.687 0.702	0.898 0.901	0.196 0.185	0.605 0.586	0.409 0.554	0.766 0.798	0.425 0.412	0.816 0.825	DMGI DMGI _{attn}	0.898 0.887	0.8 9 0.88

Clustering & Similarity Search (Unsupervised task)

Node classification (supervised task)

	AC	ACM		DB	DB	SLP	Ama	azon
	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1	MaF1	MiF1
Deepwalk node2vec GCN/GAT DGI ANRL CAN DGCN	$\begin{array}{c} 0.739\\ 0.741\\ 0.869\\ 0.881\\ 0.819\\ 0.590\\ 0.888\\ \end{array}$	$\begin{array}{c} 0.748 \\ 0.749 \\ 0.870 \\ 0.881 \\ 0.820 \\ 0.636 \\ 0.888 \end{array}$	0.532 0.533 0.603 0.598 0.573 0.577 0.582	$\begin{array}{c} 0.550 \\ 0.550 \\ 0.611 \\ 0.606 \\ 0.576 \\ 0.588 \\ 0.592 \end{array}$	$\begin{array}{c} 0.533 \\ 0.543 \\ 0.734 \\ 0.723 \\ 0.770 \\ 0.702 \\ 0.707 \end{array}$	$\begin{array}{c} 0.537\\ 0.547\\ 0.717\\ 0.720\\ 0.699\\ 0.694\\ 0.698\\ \end{array}$	$\begin{array}{c} 0.663\\ 0.662\\ 0.646\\ 0.403\\ 0.692\\ 0.498\\ 0.478\\ \end{array}$	$\begin{array}{c} 0.671 \\ 0.669 \\ 0.649 \\ 0.418 \\ 0.690 \\ 0.499 \\ 0.509 \end{array}$
CMNA MNE mGCN HAN DMGI DMGI _{attn}	0.782 0.792 0.858 0.878 0.878	0.788 0.797 0.860 0.879 0.898 0.887	0.549 0.552 0.623 0.599 0.648 0.602	0.566 0.574 0.630 0.607 0.648 0.606	0.566 0.566 0.725 0.716 0.771 0.778	0.561 0.562 0.713 0.708 0.766 0.770	0.657 0.556 0.660 0.501 0.746 0.758	0.665 0.567 0.661 0.509 0.748 0.758

DGI shows relatively good performance, but the performance is unstable

(poor performance on Amazon dataset)

 \rightarrow multiple relation types should be jointly modeled

Evaluation Results

M - 411		CM	IM	DB	DE	BLP	Am	azon		A	ъл		DB		SLP
Method	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5	NMI	Sim@5		·					
Deepwalk	0.310	0.710	0.117	0.490	0.348	0.629	0.083	0.726		MaF1	MiF1	MaF1	MiF1	MaF1	MiF1
node2vec	0.309	0.710	0.123	0.487	0.382	0.629	0.074	0.738	Deepwalk	0.739	0.748	0.532	0.550	0.533	0.537
GCN/GAT	0.671	0.867	0.176	0.565	0.465	0.724	0.287	0.624	node2vec GCN/GAT	0.741	$\begin{array}{c} 0.749 \\ 0.870 \end{array}$	0.533	$\begin{array}{c} 0.550 \\ 0.611 \end{array}$	0.543	$0.547 \\ 0.717$
DGI	0.640	0.889	0.182	0.578	0.551	0.786	0.007	0.558	DGI	0.881	0.881	0.598	0.606	0.723	0.720
ANRL	0.515	0.814	0.163	0.527	0.332	0.720	0.166	0.763	ANRL	0.819	0.820	0.573	0.576	0.770	0.699
CAN DGCN	0.504	0.836 0.690	0.074 0.143	$0.544 \\ 0.179$	0.323 0.462	0.792 0.491	0.001 0.143	0.537 0.194	CAN DGCN	0.590	$\begin{array}{c} 0.636 \\ 0.888 \end{array}$	0.577	$0.588 \\ 0.592$	0.702	$0.694 \\ 0.698$
	I	I			I		l								
CMNA	0.498	0.363	0.152	0.069	0.420	0.511	0.070	0.435	CMNA	0.782	0.788 0.797	0.549	0.566 <u>0.574</u>	0.566	0.561
MNE	0.545	0.791	0.013	0.482	0.136	0.711	0.001	0.395	MNE mGCN	0.792		0.623		0.566	0.562
mGCN	0.668	0.873	0.183	0.550	0.468	0.726	0.301	0.630	HAN	$0.858 \\ 0.878$	$0.860 \\ 0.879$	0.625	$\begin{array}{c} 0.630\\ 0.607\end{array}$	0.725 0.716	$\begin{array}{c} 0.713\\ 0.708\end{array}$
HAN	0.658	0.872	0.164	0.561	0.472	0.779	0.029	0.495	IIAN	0.070	0.079	0.399	0.007	0.710	0.708
DMGI	0.687	0.898	0.196	0.605	0.409	0.766	0.425	0.816	DMGI	0.898	0.898	0.648	0.648	0.771	0.766
DMGI _{attn}	0.702	0.901	0.185	0.586	0.554	0.798	0.412	0.825	DMGI _{attn}	0.887	0.887	0.602	0.606	0.778	0.770

Clustering & Similarity Search (Unsupervised task)

Attribute-aware multiplex network embedding methods (mGCN, HAN) > methods that neglect the node attributes. (CMNA, MNE)

Node classification (supervised task)

(even though we concatenated node attributes to the node embeddings)

 \rightarrow verifies not only the benefit of modeling the node attributes, but also that the attributes should be systematically incorporated into the model

Amazon

MiF1

0.671

0.669

0.649

0.509

0.665

0 56

0.66

0.509

0.748

0.758

MaF1

0.663

0.662

).646

0.657

0 556

0.660

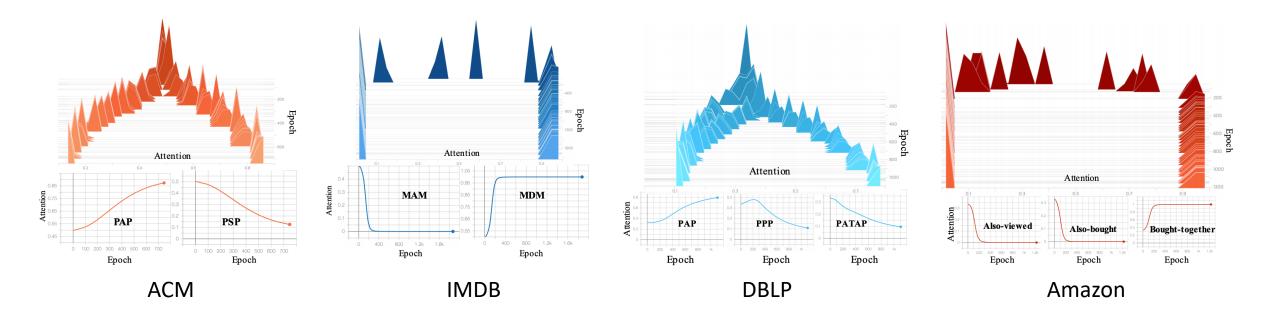
0.501

0.746

0.758

Effect of Attention Mechanism

Table 5: Performance of similarity search (Sim@5) of embedding methods for a single network. (Merged denotes the average of all the relation-type specific embeddings.)


ACM	GCN	DGI	ANRL	DMGI	DMGI
Rel. PAP Type PSP	$\begin{array}{c c} 0.822 \\ 0.721 \end{array}$	$0.875 \\ 0.675$	0.795 0.694	Divici	attn
Merged	0.867	0.889	0.814	0.898	0.901
IMDB	GCN	DGI	ANRL	DMGI	DMGI
Rel. MAM Type MDM	$ \begin{array}{c} 0.485 \\ 0.548 \end{array} $	$\begin{array}{c} 0.484 \\ 0.562 \end{array}$	0.495 0.520	DiviGi	DMGI
Merged	0.566	0.578	0.527	0.605	0.586
DBLP	GCN	DGI	ANRL	DMGI	DMGI
Rel. PAP Type PATAP	$\begin{array}{c} 0.730 \\ 0.456 \\ 0.431 \end{array}$	$\begin{array}{c} 0.779 \\ 0.477 \\ 0.409 \end{array}$	0.692 0.680 OOM	Dividi	DMGI
Merged	0.724	0.786	0.720	0.766	0.799
Amazon	GCN	DGI	ANRL	DMCI	DMGI
Rel. Also-V Also-B Type BouT	$\begin{array}{c c} 0.355 \\ 0.357 \\ 0.662 \end{array}$	$\begin{array}{c} 0.367 \\ 0.381 \\ 0.639 \end{array}$	$\begin{array}{c} 0.563 \\ 0.516 \\ 0.770 \end{array}$	DMGI	DMGI
Merged	0.624	0.558	0.764	0.816	0.825

DMGI_{attn} outperforms DMGI in most of the datasets but IMDB dataset

Why?

Analysis on Attention Weights

• Visualization of the attention weights

- The attention weights eventually end up in both extremes (Close to either 0 or 1)
- Most of the attention weight is dedicated to a single relation type

Going back ...

Table 5: Performance of similarity search (Sim@5) of embedding methods for a single network. (Merged denotes the average of all the relation-type specific embeddings.)

ACM, DBLP, Amazon

The performance differences among relation types are more biased to a single relation type

→ Some relations are more important than others

→ Skewed attention works

ACM	GCN	DGI	ANRL	DMGI	DMGI
Rel. PAP Type PSP	0.822 0.721	$0.875 \\ 0.675$	0.795 0.694	Divici	DMGI
Merged	0.867	0.889	0.814	0.898	0.901
IMDB	GCN	DGI	ANRL	DMGI	DMGL
Rel. MAM Type MDM	$0.485 \\ 0.548$	$\begin{array}{c} 0.484 \\ 0.562 \end{array}$	0.495 0.520	DiviGi	DMGI
Merged	0.566	0.578	0.527	0.605	0.586
DBLP	GCN	DGI	ANRL	DMGI	DMGI
Rel. PAP Type PATAP	$\begin{array}{c} 0.730 \\ 0.456 \\ 0.431 \end{array}$	$\begin{array}{c} 0.779 \\ 0.477 \\ 0.409 \end{array}$	0.692 0.680 OOM	Dividi	DMGI
Merged	0.724	0.786	0.720	0.766	0.799
Amazon	GCN	DGI	ANRL	DMCI	DMGI
Rel. Also-V Also-B Type BouT	$\begin{array}{c c} 0.355 \\ 0.357 \\ 0.662 \end{array}$	$\begin{array}{c} 0.367 \\ 0.381 \\ 0.639 \end{array}$	0.563 0.516 0.770	DMGI	DMGI
Merged	0.624	0.558	0.764	0.816	0.825

IMDB

All the relations show relatively similar performance

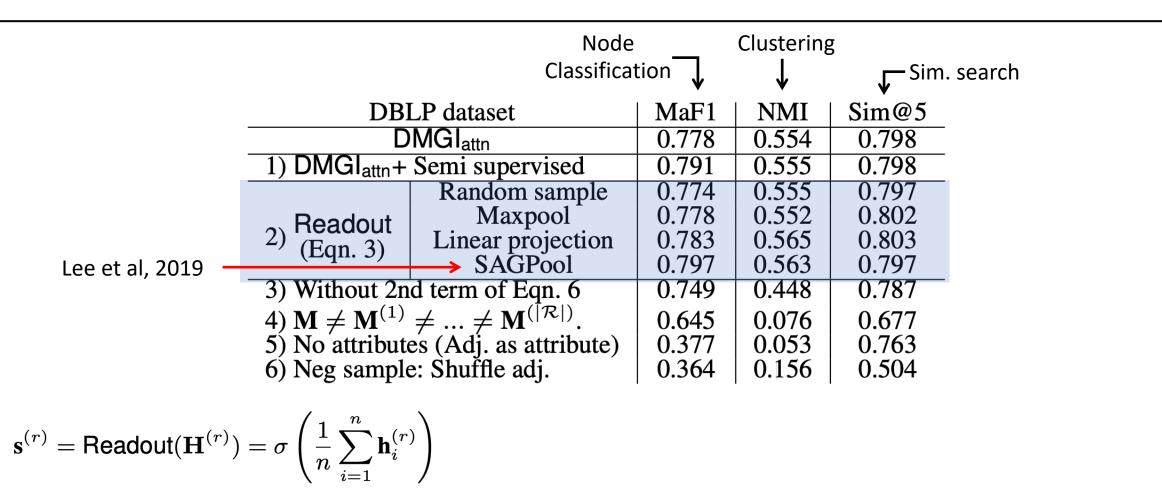
→ Both relations are important

→ Skewed attention is not helpful

Using attention score as a way of filtering

- In DBLP, PATAP turned out to be the most useless relation (i.e., PATAP is noise)
- \rightarrow We expect that removing PATAP will improve performance

Table 6: NMI on various combinations of relation types.


_	DB	LP dataset	GCN/GAT	DGI	DMGIattn
	NMI	PAP+PPP PAP+PATAP PPP+PATAP	0.464 0.458 0.332	0.543 0.535 0.237	0.565 0.017 0.201
		All	0.465	0.551	0.554

• *DMGI_{attn}* obtains even better results without "PATPA" than using all the relation types, whereas for GCN and DGI, still considering all the relation types shows the best performance.

Attention mechanism can be useful to filter out unnecessary relation types, which will especially come in handy when the number of relation types is large.

		Node Classificat		Clustering	g ↓ Sim.	search
	DB	LP dataset	MaF1	NMI	Sim@5	
	D	0.778	0.554	0.798		
-	1) DMGI _{attn} +	Semi supervised	0.791	0.555	0.798	
	2) Readout (Eqn. 3)	Random sample Maxpool Linear projection SAGPool	$\begin{array}{c} 0.774 \\ 0.778 \\ 0.783 \\ 0.797 \end{array}$	$\begin{array}{c} 0.555 \\ 0.552 \\ 0.565 \\ 0.563 \end{array}$	0.797 0.802 0.803 0.797	
-	3) Without 2n	0.749	0.448	0.787		
	4) $\mathbf{M} \neq \mathbf{M}^{(1)} \neq \neq \mathbf{M}^{(\lceil \mathcal{R} \mid)}$. 5) No attributes (Adj. as attribute) 6) Neg sample: Shuffle adj.			$0.076 \\ 0.053 \\ 0.156$	$0.677 \\ 0.763 \\ 0.504$	

Semi supervised module is mainly beneficial for supervised task

Advanced pooling technique helps, but not significantly

		Node Classificat		Clustering ↓		. search
	DBI	LP dataset	MaF1	NMI	Sim@5	
	D	MGI _{attn}	0.778	0.554	0.798	
	1) DMGI _{attn} +	Semi supervised	0.791	0.555	0.798	
		Random sample	0.774	0.555	0.797	
	Readout	Maxpool	0.778	0.552	0.802	
	2) Readout (Eqn. 3)	Linear projection	0.783	0.565	0.803	
		SAGPool	0.797	0.563	0.797	
		d term of Eqn. 6	0.749	0.448	0.787	
	$4) \mathbf{M} \neq \mathbf{M}^{(1)}$	$\neq \dots \neq \mathbf{M}^{([\mathcal{R}])}.$	0.645	0.076	0.677	
	5) No attribute	és (Adj. as attribute)	0.377	0.053	0.763	
	6) Neg sample	e: Shuffle adj.	0.364	0.156	0.504	
	$\ell_{\mathrm{cs}} = \begin{bmatrix} \mathbf{Z} - \mathcal{Q} \end{bmatrix}$	$\left\{ \mathbf{H}^{(r)} \mid r \in \mathcal{R} ight\} ight) ight]^2 -$	$\left[\mathbf{Z} - \mathcal{Q} \left(\right) \right]$	$\{\mathbf{ ilde{H}}^{(r)} \mid r$	$\in \mathcal{R} \} \Big) \Big]^2$	
	imize the agreem		Maximize	the disage	reement wit	h the
of "r	eal" node emhed	dings				

of "real" node embeddings

"fake" node embeddings

	Node Classificat		Clusterinរ្ទ l	g ↓ Sim. search
		₩	₩	V Sinn Scaron
DB	MaF1	NMI	Sim@5	
D	DMGI _{attn}			0.798
1) DMGI _{attn} +	1) DMGl _{attn} + Semi supervised			0.798
	Random sample	0.774	0.555	0.797
$_{2}$ Readout	Maxpool	0.778	0.552	0.802
2) (Eqn. 3)	Linear projection	0.783	0.565	0.803
(Lqn. J)	SAGPool	0.797	0.563	0.797
3) Without 2n	d term of Eqn. 6	0.749	0.448	0.787
4) $\mathbf{M} \neq \mathbf{M}^{(1)}$	0.645	0.076	0.677	
5) No attribut	0.377	0.053	0.763	
6) Neg sample	e: Shuffle adj.	0.364	0.156	0.504

Universal discriminator is critical

Conclusion

- A simple yet effective unsupervised method for embedding attributed multiplex network
- DMGI can jointly integrate the embeddings from multiple types of relations between no des through the **consensus regularization framework**, and the **universal discriminator**
- The attention mechanism can infer the importance of each relation type
 - Facilitates the preprocessing of the multiplex network
- Showed superior results not only on unsupervised tasks, but also on a supervised task

References

- [Qu et al, 2017] Qu, M.; Tang, J.; Shang, J.; Ren, X.; Zhang, M.; and Han, J. 2017. An attention-based collab oration framework for multi-view network representation learning. In CIKM. ACM
- [Zhang et al, 2018] Zhang, Z.; Yang, H.; Bu, J.; Zhou, S.; Yu, P.; Zhang, J.; Ester, M.; and Wang, C. 2018b. Anr I: Attributed network representation learning via deep neural networks. In IJCAI
- [Chu et al, 2019] Chu, X.; Fan, X.; Yao, D.; Zhu, Z.; Huang, J.; and Bi, J. 2019. Cross-network embedding for multi-network alignment. In WWW
- [Hjelm et al, 2019] Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal, K.; Trischler, A.; and Bengio, Y. 2019. Learning deep representations by mutual information estimation and maximization. ICLR
- [Velickovic et al, 2019] Velickovic, P.; Fedus, W.; Hamilton, W. L.; Li ´o, P.; Bengio, `Y.; and Hjelm, R. D. 201
 9. Deep graph infomax. ICLR
- [Ma et al, 2019] Ma, Y.; Wang, S.; Aggarwal, C. C.; Yin, D.; and Tang, J. 2019. Multi-dimensional graph convolutional networks. In SDM. SIAM
- [Wang et al, 2019] Wang, X.; Ji, H.; Shi, C.; Wang, B.; Ye, Y.; Cui, P.; and Yu, P. S. 2019. Heterogeneous graph attention network. In WWW. ACM.
- [Lee et al, 2019] Lee, J.; Lee, I.; and Kang, J. 2019. Self-attention graph pooling. ICML.