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ABSTRACT
The goal of network embedding is to transform nodes in a network
to a low-dimensional embedding vectors. Recently, heterogeneous
network has shown to be effective in representing diverse informa-
tion in data. However, heterogeneous network embedding suffers
from the imbalance issue, i.e. the size of relation types (or the num-
ber of edges in the network regarding the type) is imbalanced. In
this paper, we devise a new heterogeneous network embedding
method, called BHIN2vec, which considers the balance among all
relation types in a network. We view the heterogeneous network
embedding as simultaneously solving multiple tasks in which each
task corresponds to each relation type in a network. After splitting
the skip-gram loss into multiple losses corresponding to differ-
ent tasks, we propose a novel random-walk strategy to focus on
the tasks with high loss values by considering the relative train-
ing ratio. Unlike previous random walk strategies, our proposed
random-walk strategy generates training samples according to the
relative training ratio among different tasks, which results in a
balanced training for the node embedding. Our extensive experi-
ments on node classification and recommendation demonstrate the
superiority of BHIN2vec compared to the state-of-the-art methods.
Also, based on the relative training ratio, we analyze how much
each relation type is represented in the embedding space.

CCS CONCEPTS
•Theory of computation→Unsupervised learning and clus-
tering; • Computing methodologies→ Knowledge represen-
tation and reasoning.
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Figure 1: Citation network (left) and a randomwalk sampled
from citation network (right). Solid line refers to explicit re-
lation. Dashed line and dotted line refer to implicit relations
using one intermediate node and two intermediate nodes, re-
spectively.
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ment (CIKM’19), November 3–7, 2019, Beijing, China. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3357384.3357893

1 INTRODUCTION
Network embedding has been actively researched in the datamining
field [4, 6, 8, 10, 14, 15, 20]. To apply machine learning techniques
such as classification and regression [13] to network data, nodes
in a graph are generally mapped to low-dimensional embedding
vectors. These vectors are fed into various downstream tasks such
as node classification, link prediction and visualization [4]. As a
heterogeneous network can represent nodes and edges of different
types within a single network, it has been widely used to represent
diverse underlying information in real-world data. Citation network
(Fig. 1) is a representative heterogeneous network, which typically
consists of four types of nodes – author, paper, topic and venue
[4, 6, 15, 19, 23]. These nodes are connected using relation types (i.e.
edges in the network) such as authorship, citation, related topic,
and published venue, and the size of each relation type (i.e. the
number of edges regarding the type) is different.

Random walk, which is to sample a sequence of nodes from a
network, has been widely adopted as a basic tool for extracting
information from a network [8, 14]. Rooted at a node, the next node
is repeatedly selected at random among its neighboring nodes,
until a walk reaches a predefined length. Many network embedding
methods [8, 14] use random walk to sample a sequence from a
network because it preserves explicit and implicit relations inside
the network. Explicit relation refers to a direct relationship between
two nodes, and implicit relation refers to an indirect relationship
between two nodes connected via some intermediate nodes. For
example, in the random walk from the citation network (Fig. 1), the
relationship between AuthorA and PaperA is explicit, whereas that
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Figure 2: Overall diagram of the multitask learning model
and BHIN2vec

between AuthorA and VenueA is implicit, as they are connected
via PaperA.

However, random walk produces an imbalanced training of
heterogeneous networks, because the major relation types take
a large portion of training samples and thus dominate the train-
ing and minor relation types will hardly be learned. For exam-
ple, in YAGO knowledge base, the number of explicit relations
between Person and Position is 2,012, but that of explicit rela-
tions between Person and Orдanization is 886,529 (Refer to Table
1). Thus, the Person − Position relationship is unlikely to be cap-
tured by existing random walk strategies, as it is dominated by the
Person −Orдanization relationship. Simply incorporating an equal
number of samples for each relation type will not suffice either,
because the learning difficulty is different for each relation type.
Instead, we regulate the number of samples in a sampled random
walk by considering the loss value which represents the learning
difficulty. Recently proposed heterogeneous network embedding
methods [6, 10] do not handle the imbalance problem, because they
just use the conventional random walk or fix the ratio, by a hyper-
parameter, which determines whether to switch the relation type
when sampling the next node in a random walk.

In this paper, we propose Balanced Heterogeneous Information
Network to Vector, called BHIN2vec, to resolve the imbalance issue
in the heterogeneous network. The core idea of BHIN2vec is to
view the heterogeneous network embedding as a multi-task learn-
ing problem in that each task is derived from a relation type in
a network. For example, the goal of a task "Author −Author − 0"
is to maximize the similarity of an explicit relation between two
authors (Fig. 2). We adopt GradNorm [3], which is a technique that
employs inverse training ratio to solve the training imbalance issue
in multi-task learning, to balance the training of different relation
types in a network so as to generate a balanced embedding vector
for each node. More precisely, we use inverse training ratio to first
find the relation types that are less trained, i.e., relations that incur
high loss values, and then generate random walks that contain
more of the less-trained relations. In doing so, we propose a new
random walk strategy that introduces a stochastic matrix to store
the probabilities of choosing the next node type given the current
one. The stochastic matrix is trained using inverse training ratio,
and it eventually generates a random walk that contains more of
the less-trained relations, and that considers all possible relation
types.

BHIN2vec has three benefits compared to other network embed-
ding methods. First, BHIN2vec trains all different relationships in
a balanced way, and thus facilitates high quality representations
for minor relations. Also, in the experimental section, we demon-
strate that containing the minor relations in the embedding space
actually helps represent the major relations. Second, BHIN2vec
considers all possible relation types by introducing a stochastic
matrix, which is a more elaborate way to handle type information
within a heterogeneous network. Finally, BHIN2vec produces the
inverse training ratio for each relation. This statistic can serve as a
measure of how much each relation is mapped to the embedding
space. By visualizing the stochastic matrix that stores the infor-
mation of inverse training ratio, we can understand which type of
relation is reflected well. To the best of our knowledge, this is the
first work to leverage a new statistic apart from the training loss
for heterogeneous network embedding.

The main contributions of our paper are summarized as follows:

• We propose a novel heterogeneous network embedding
method that automatically handles the imbalance issue in a
heterogeneous network.
• We provide the stochastic matrix trained from inverse train-
ing ratio to understand how much each relation is repre-
sented compared to other relations during training.
• We conduct node classification and recommendation task
to demonstrate that our embedding vector outperforms the
state-of-the-art methods.

The rest of this paper is organized as follow. In section 2 and 3,
we explain the related work and define our problem and widely
used notations. In section 4, we propose our method, BHIN2vec.
In section 5, we report our experimental results and discuss them.
Finally, we conclude our research in section 6.

2 RELATEDWORK
2.1 Heterogeneous network embedding
The goal of network embedding is to transform nodes in a net-
work into a embedding space while preserving their property. Two
approaches exist for the network embedding: factorization based
methods [25] and random walk based methods [8, 14]. We focus on
the random walk based methods. The random walk based methods
sample random walks from a network and maximize the similarity
between two nodes contained in the random walks [8, 14]. Deep-
walk [14] samples random walks without any constraint and other
methods change the random walk strategy to capture the underly-
ing structure in a network [8].

Recent heterogeneous network embedding methods consider
the type in a heterogeneous network [4, 6, 10]. One approach is
to use a meta-path analyzed by domain experts. Metapath2vec
[4] samples random walks controlled by the meta-path. However,
finding an appropriate meta-path is hard as the number of types
increases. Therefore, methods that do not require a meaningful
meta-path have emerged [6, 10]. HIN2vec [6] introduces a meta-
path embedding table which saves the embedding vector for all
possible meta-paths. These embedding vectors provide a different
intensity for each dimension based on the corresponding meta-path.
JUST [10] designs a new random walk strategy without meta-path.
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They regulate the transition between types in a random walk using
hyper-parameters.

2.2 Balance training for multi-task learning
Multi-task learning is to learn a single model that handles multiple
tasks [1]. Multi-task models generate robust intermediate features
because these features need to fit various tasks [2, 3, 24]. These
features are fed into the task-specific layers to perform tasks. Task-
specific losses are calculated from the tasks and model optimizes
an aggregated loss to jointly learn them. In the recent success of
deep learning, computer vision is the primary application area for
multi-task learning, but it can be used in various fields such as
natural language processing [18] and speech synthesis [21].

The balance among tasks is important when training a multi-task
model [3, 11]. The characteristics for the tasks are diverse, which
impedes the model to learn them compatibly. The irregular size
of gradients can be one possible characteristic to inhibit training.
The gradient size might be affected by the loss value and some
large gradients can dominate the shared features. To resolve the
imbalance, GradNorm [3] introduces inverse training ratio which
represents how much training goes along and adjusts the gradient
size proportional to the training ratio.

3 PROBLEM DEFINITION
We formally define three concepts that are widely used in this field:
heterogeneous network, meta-network and network embedding.

Heterogeneous network. A heterogeneous network consists of
four components, G = (V ,E,T ,ϕ). V = {vi | i ∈ N} and T =
{ti | i ∈ N} refer to the node set and their type, respectively. E ={(
vi ,vj

)
| vi ∈ V ∧vj ∈ V

}
refers to the edge set. The mapping

function, ϕ (·) : V → T , indicates the type for each node.

Meta-network. Given a heterogeneous network G = (V ,E,T ,ϕ),
a meta-network is defined as Gmeta = (Vmeta ,Emeta ). This net-
work represents the relationship between node types in the hetero-
geneous network. The node formeta-network is the node type in the
heterogeneous network,Vmeta = T . Two node types are connected
if there exist at least one corresponding connection in the network,
Emeta =

{
(ti , tj ) |

∃ (
vx ,vy

)
∈ E ∧ ϕ (vx ) = ti ∧ ϕ

(
vy

)
= tj

}
.

Network embedding. Given a networkG , the network embedding
is to find a function f (·) : V → Rd which takes one node as
input and gives an embedding vector for that node as output. The
embedding vector captures the network structure.

4 METHOD
Our proposed method, BHIN2vec, consists of two parts: a skip-gram
model and a biased random walk generator. We extend the skip-
gram model and create a side-product, called inverse training ratio
tensor. In doing so, we propose a new random walk strategy that
uses a stochastic matrix. We connect our extended skip-grammodel
and the new randomwalk strategy by training the stochastic matrix
using the inverse training ratio tensor. The conceptual diagram of
BHIN2vec for citation network is illustrated in Figure 3.

4.1 BHIN2vec: Skip-gram model
Normal skip-gram model. The skip-gram model has a node em-

bedding table Q ∈ R |V |×d which stores the d-dimensional em-
bedding vector for all nodes [12, 14]. Our objective is to learn
Q where f (vi ) = Q[i]. The model takes a sequence of nodes
w = (w1, · · · ,wl ) with length l , called walk, as an input. The skip-
gram model maximizes the probability to predict context nodes
using a source node. Choosing a source node vi for a given walk,
the context nodes for the vi are the k nodes right behind the vi in
the walk. k is a predefined parameter, called the context window
size. We calculate the inner product of the embedding vector for
the source node and the embedding vector for the context node and
apply the softmax function to get the probability to predict the con-
text node given the source node. Using the negative log-likelihood
loss, the skip-gram loss for one random walkw is calculated as

L = −
l∑
i=1

k∑
j=1

logp
(
wi+j |wi

)
= −

l∑
i=1

k∑
j=1

log
ef (wi+j )

⊤f (wi )∑V
vn e

f (vn )⊤f (wi )
. (1)

The denominator of the softmax function requires large computa-
tions, so we adopt the negative sampling approach to approximate
that value [12]. We takem samples, called NV , from V with their
empirical distribution. Then, the above loss function is changed to

L = −
l∑

i=1

k∑
j=1

(
Lp

(
wi+j ,wi

)
+

NV∑
vo

Ln (vo ,wi )

)
(2)

Lp (vc ,vs ) = logσ
(
f (vc )

⊤ f (vs )
)

(3)

Ln (vc ,vs ) = logσ
(
−f (vc )

⊤ f (vs )
)
, (4)

where σ is the sigmoid function. We calculate the gradient of loss
value with respect to the embedding table and update the embed-
ding table to minimize the loss value.

Multi-task setting for heterogeneous network embedding. To apply
the technique used in multi-task learning, we reconstruct hetero-
geneous network embedding as if we train multiple tasks simulta-
neously. First, we define virtual tasks using the relation type. The
definition of virtual task Ji jk is to predict nodes which types are
tj given a node which type is ti and the two nodes are connected
via k intermediate nodes. Then, we construct a possible task set
that contains the corresponding relation type which is used in the
skip-gram model. Given a walk w , the skip-gram model uses the
relations between two nodes where two nodes are connected via
at most k nodes. Considering all combination of the source node’s
type and context node’s type, the number of tasks that are used in
the skip-gram model is k × |T | × |T | where k is the context window
size and |T | is the number of types in a network. We reduce the
size of possible tasks by removing the tasks that always not appear
in any random walks. If an implicit relation between ti and tj via k
nodes doesn’t exist in meta-network, then the task Ji jk is always
not contained in any walk. Finally, we define a possible task set
Jpossible which can be contained in a random walk.

Jpossible =
{
Jxyz |

(
Az

)
xy > 0

}
(5)

A = the adjacency matrix of Gmeta (6)
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Figure 3: The conceptual diagram of BHIN2vec. We use a simple citation network. The node name consists of the node type
and their index. The walk length is 5, the context window size is 2, the node dimension is 5. The random walk generator uses
the corresponding row in the stochastic matrix to sample next type. In the extended skip-gram model, we split loss value
based on the relation type. The inverse training ratio tensor is produced as a side-product and used for training the stochastic
matrix in the random walk generator.

Balance in multitasks. To quantify the imbalance in virtual tasks,
we formulate the loss value for each task and define inverse training
ratio tensor. We split the Lp and Ln in Equation (3) and (4) for each
virtual task and calculate the loss values.

L
[
Jxyz

]
= −

∑l
i=1

(
L

[
Jxyz

]
p (wi+z+1,wi ) +

∑NV
vo L

[
Jxyz

]
n (vo ,wi )

)
∑l
i=1

(
I
[
Jxyz

]
(wi+z+1,wi ) +

∑NV
vo I

[
Jxyz

]
(vo ,wi )

) (7)

L
[
Jxyz

]
p (vc ,vs ) =

{
Lp (vc ,vs ) if ϕ (vc ) = ty ∧ ϕ (vs ) = tx

0 otherwise
(8)

L
[
Jxyz

]
n (vc ,vs ) =

{
Ln (vc ,vs ) if ϕ (vc ) = ty ∧ ϕ (vs ) = tx

0 otherwise
(9)

I
[
Jxyz

]
(vc ,vs ) =

{
1 if ϕ (vc ) = ty ∧ ϕ (vs ) = tx

0 otherwise
(10)

Also, some relation types are not contained in a random walk by
chance. In this case, we take the previous loss calculated in the
previous iteration as the surrogate value for the current one. For the
loss value for each task, we take the mean to normalize the number
of occurrence. These loss values represent which task doesn’t fit in
the embedding space compared to the others. Given the loss values,
we define the inverse training ratios as

L̃
[
Jxyz

]
(t) = L

[
Jxyz

]
/Linit ial

[
Jxyz

]
(11)

r
[
Jxyz

]
(t) = L̃

[
Jxyz

]
(t) /EJpossible

[
L̃ [J ] (t)

]
, (12)

where Linit ial
[
Jxyz

]
is the initial loss when training starts [3].1

L̃
[
Jxyz

]
(t) is the training ratio of Jxyz at time t , representing the

amount of training that has been done. r
[
Jxyz

]
is the relative

1Because the initial loss is unstable, we take a theoretical loss value as the initial
loss. Suppose that p

(
wi+j |wi

)
= 0.5 in the Equation (1), the initial loss value is

k × (l − k ) × 0.6931.

inverse of the training ratio. If r
[
Jxyz

]
(t) > 1, the task Jxyz is

premature compared to the other tasks. We arrange these inverse
training ratios to a 3-dimensional tensor I ∈ Rk×|T |× |T | , called
inverse training ratio tensor. We set one for the tasks that always
not occur in a random walk.

Izxy (t) =

{
r [Jxyz ] (t) if Jxyz ∈ Jpossible
1 otherwise

(13)

Heterogeneous skip-gram model. We adopt two variants for the
skip-gram model. We sample negative nodes which have the same
type with positive node [4]. It gives stable loss value for each task.
Also, we create a task embedding table QR ∈ R

k×|T |× |T |×d and
define function fR

(
k, ti , tj

)
= QR

[
k, ti , tj

]
which maps each task

into d-dimensional vector. By multiplying the node embedding
vector by the corresponding task embedding vector, relations will
be embedded with different intensities for each dimension.

Lp (vc ,vs ) = logσ
( (√

r ⊙ f (vc )
)⊤ (√

r ⊙ f (vs )
) )

(14)

Ln (vc ,vs ) = logσ
(
−

(√
r ⊙ f (vc )

)⊤ (√
r ⊙ f (vs )

) )
(15)

r = fR (k,ϕ (vc ) ,ϕ (vs )) (16)

4.2 BHIN2vec: Biased random walk generator
Random walk strategy. To provide a walk to the skip-grammodel,

we sample random walks from a network. Rooted at a node, we
randomly select the next node from the adjacent nodes. Iterating
this procedure l times, a walk with length l is generated from the
network. To extract informative relations in the heterogeneous
network, the random walk strategy needs to consider type. When
sampling a random walk, a simple extension to consider type is to
do an additional sampling for type. More precisely, we determine
the type for the next node by sampling and do another sampling
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Algorithm 1: BHIN2vecWalk
Input: Start node v , stochastic matrix P , Walk length l

Heterogeneous network G = (V ,E,T ,ϕ)
Output: Random walkw
w[1] = v ;
for i ← 1 to l − 1 do

nxt_t = BiasedSample (T , P [ϕ (w[i]) , :]);
tarдet = {vj |

(
w[i],vj

)
∈ E ∧ ϕ

(
vj

)
= nxt_t};

w[i + 1] = Uni f ormSample (tarдet);
end
returnw

for the next node that has the sampled type. The remaining part of
the random walk strategy is how to sample the next type and the
next node.

Stochastic matrix. We introduce a stochastic matrix to do bias
sampling when sampling the next type. The stochastic matrix P ∈
R |T |× |T | describes the transition probabilities from the current
states to the next state [7]. In our case, the value Pi j = p

(
tj |ti

)
in

the stochastic matrix P is the probability to choose tj for the next
type when the current node type is ti .

Pi j = p
(
tj |ti

)
such that

∑
j
Pi j = 1 (17)

We setp
(
tj |ti

)
to zero if no edge between ti and tj exists in themeta-

network. So, this stochastic matrix can be viewed as a weighted
adjacency matrix for the meta-network. We use the corresponding
row of the current type in the stochastic matrix when sampling
the next type. Also, note that the stochastic matrix represents the
multi-hop type transition probability in a compact manner.

(Pk )i j = p
(
tj |ti ,k

)
(18)

Based on this probability, we approximate the ratio for the implicit
relation included in the sampled random walk. The pseudo-code
for our biased random walk is illustrated in the Algorithm 1.

4.3 BHIN2vec: From inverse training ratio
tensor to stochastic matrix

We train the stochastic matrix to store the information in the inverse
training ratio tensor. We intend to sample more of less-trained
relations so that the less-trained relations would be reflected more
in the embedding space.

Perturbation approach. We perturb already existing stochastic
matrix using inverse training ratio tensor.We use a uniform stochas-
tic matrix Puni ∈ R |T |× |T | as an existing solution. In the uniform
stochastic matrix, the transition probability to target type is equal
for each source type.

Punixy =

{
1

deдree(tx )
if (tx , ty ) ∈ Emeta

0 otherwise
(19)

Using the uniform stochastic matrix, we calculate the probability
to move from ti to tj in k steps and perturb this probability using

Algorithm 2: BHIN2vec
Input: Heterogeneous network G = (V ,E,T ,ϕ)

Latent dimension d , walk length l
Context window size k , negative sample sizem
Epoch num e , learning rate r , r2

Output: Node embedding matrix Q
Initialize Q ∈ R |V |×d ;
P = [[0, · · · , 0], · · · , [0, · · · , 0]] ∈ R |T |× |T | ;
P[i, j] = 1 for explicit edge;
for 1 to e do

foreach v ∈ V do
w = BHIN 2vecWalk (v, P , l ,G);
L = SkipGram (w,k,m,Q);
Q = Q − r ∂

∂Q L;
Create I ∈ Rk×|T |× |T | using Equation (13);
Calculate Lstochastic using Equation (20);
P = P − r2

∂
∂P Lstochastic ;

end
end
return Q

Iki j .

Lstochastic =
k−1∑
i=0

���P i+1 − (
P i+1uni + α (Ii − 1)

)���2
F

(20)

The perturbation parameter α determines how much the perturba-
tion is applied to the existing solution.

Update stochastic matrix. We calculate the gradient of this loss
value with respect to the stochastic matrix and update the stochastic
matrix to minimize the loss value. To preserve the property in the
stochastic matrix, we only update nonzero values and clip the values
between zero and one. Then, we normalize the row in the stochastic
matrix.

In summary, given a random walk, the skip-gram model updates
the embedding table and creates an inverse training ratio tensor
as a side-product. Then, using the inverse training ratio tensor,
the loss value for the stochastic matrix is calculated and used for
training. After updating the stochastic matrix, we sample a new
random walk. We alternately optimize the embedding table and
the stochastic matrix by iterating this process until the training
converges. The pseudo-code for the overall BHIN2vec procedure is
illustrated in the Algorithm 2.

5 EXPERIMENTS
In this section, we create embedding vectors using BHIN2vec and
analyze the result to understand the behavior of BHIN2vec. We
focus on the following research questions.
• RQ1: Does our method get better node representations than
other baselines?
• RQ2: Do the representations contain all different relation
types in the heterogeneous network?
• RQ3: How do the hyper-parameters affect our method?
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To answer RQ1 and RQ2, we conduct two general tasks: multi-
class node classification and recommendation using link prediction.
To answer RQ3, we conduct the sensitivity analysis on the pertur-
bation hyper-parameter α .

5.1 Dataset and Baseline
Dataset. We build up heterogeneous networks from the real-

world data. All datasets can be accessed from the public websites.

• BlogCatalog is the social blog directory which manages
the bloggers and their groups.2 This dataset contains two
types: user and group. Friendships between users and group
membership exist in the network.
• Douban is a movie platform website. We used preprocessed
version of this dataset.3 Movie, actor, director and user nodes
compose this network and the nodes are connected with
four relation types: an actor participates a movie; a director
produces a movie; a user watches a movie; and a friendship
between two users.
• DBLP is a website that manages the research publication.4
We used V10 for our experiment [17]. We build up a hetero-
geneous network with four type: author, paper, topic and
venue. The topic is generated by splitting the title and ab-
stract into words. Four relationships exist in the network:
an author writes a paper; a paper references other paper; a
paper contains a topic and a paper is published in a venue.
• YAGO is an open source knowledge base. We used prepro-
cessed version for this experiment [16]. Seven types exist in
the network: person, piece of work, prize, position, event,
organization and location. Eight relation types exist in the
network.

We removed nodes which degree is less than 2 because these nodes
contain inadequate information. We summarize the statistic for
each dataset in Table 1.

Baseline Method. We compare our method with other network
embedding methods.

• Deepwalk [14] does a pioneering work by introducing the
skip-gram model into network embedding task. This model
samples random walks from a network and increases the
similarity between the source nodes and context nodes.
• LINE [20] considers first and second order proximity in a
network. Instead of sampling random walks, they directly
optimize the similarity between nodes.
• HIN2vec [6] introduces a meta-path embedding table and
jointly optimizes the node embedding table and the meta-
path embedding table. They combine the node embedding
vector with the meta-path embedding vector to control the
intensity of each dimension for different relation types.
• JUST [10] adjusts the random walk strategy by introducing
two hyper-parameters. Instead of using the meta-path, they
sample random walks with the type transition probability
and a queue that manages previously sampled types.

2http://socialcomputing.asu.edu/datasets/BlogCatalog3
3https://bit.ly/2CDFI9z
4https://aminer.org/citation

Table 1: Dataset statistic

Dataset Node Edge

BlogCatalog User 10312 U-U 267181
Group 39 U-G 11581

Douban User 12392 M-U 658412
Movie 9322 U-U 3268
Actor 5765 M-A 20400

Director 2202 M-D 6646

DBLP Author 133774 A-P 667340
Paper 230356 P-P 996495
Topic 119190 P-T 2463562
Venue 165 P-V 219856

YAGO PErson 346838 LO-LO 350005
LOcation 134817 OR-LO 5776
WOrk 71852 EV-LO 9171

ORganization 18716 PE-LO 177646
EVent 5590 PE-OR 886529
PRize 1711 PE-WO 298632

POsition 301 PE-PO 2012
PE-PR 69249

We use the author codes except JUST because JUST doesn’t publish
their code.

Hyper-parameter tuning. To focus on the heterogeneous property
in the network, we fix all parameters related to the homogeneous
property. All methods require a walk length l , the number of epoch
e , the node dimension d , the context window size k and the number
of negative nodes per positive nodem. We fix l = 100, e = 10,k =
5,m = 5,d = 128 for all methods. Heterogeneous network em-
bedding methods introduce different hyper-parameters to handle
the type. HIN2vec doesn’t have additional hyper-parameters. JUST
takes two hyper-parameters, α and the size of queue. We perform
grid search on α = [0.25, 0.5, 0.75] and the size of queue = [1, 2, 3].
Our method takes two hyper-parameters, the perturbation parame-
ter α and the learning rate for the stochastic matrix r2. We perform
grid search on α = [0.05, 0.1, 0.2] and r2 = [0.25, 0.025, 0.0025].

5.2 Multi-class node classification
To answer RQ1, we measure the F1 score for the multi-class node
classification task based on the node embedding table. Note that
the purpose of this experiment is to evaluate the quality of the
network embedding. We measure the performance of several node
classification tasks and then determine the quality of network em-
bedding based on their average. We conduct the multi-class node
classification task on different node types.

Constructing label information. We create a label for DBLP net-
work. For venue node, We adopt the same way as Metapath2vec
[4] does. In Google Scholar5, we crawl top venues in each category
and label venue nodes with their category. Then, we propagate the
venue label to the paper nodes. We carefully determine the label

5https://scholar.google.com/citations

Session: Long - Heterogeneous Data CIKM ’19, November 3–7, 2019, Beijing, China

624



Figure 4: Node classification result on DBLP dataset

for paper nodes which have diverse information. For a given paper,
we collect the labels for papers citing that paper. The labels of the
papers cited by that paper are also collected separately. Then, we
choose the label that contains the most in collected labels. Finally,
we randomly sample one of the three labels, the label found in each
label set and the venue label, to determine the label of a given paper.
The labels of author and topic nodes are determined by random
sampling among the labels of connected papers.

Evaluation protocol. We classify the nodes with given labels.
First, we train a node embedding table using network embedding
methods. Then, we choose the embedding vectors for the labeled
nodes. We randomly choose 20 percent of the labeled nodes to
construct the test set and the remaining labeled nodes are used to
construct the training set. We train the logistic regression classifier
using the training set and evaluate the micro F1 and macro F1 score
using the test set. Also, we conduct this experiment with different

size of the training nodes. We report the average score from 10
repeated trials.

Result. We reports the micro F1 and macro F1 values on Author ,
Paper , Topic and its average in Figure 4. This experimental result
has three noticeable points. First, our proposed method, BHIN2vec,
gives better average micro F1 and macro F1 scores than the other
methods do, which is the answer for RQ1. BHIN2vec reports com-
parable performance onTopic nodes, and gives better micro F1 and
macro F1 scores on Author and Paper nodes than that of the other
methods. Second, BHIN2vec prevents some relationships from dom-
inating the embedding space. In DBLP network, the Paper −Topic
relation is most common. Deepwalk [14] and HIN2vec [6] optimize
that relation in the network. However, these methods does not
optimize other minor relations inside the network, which results
in the low F1 score in Author and Paper node classification task.
Lastly, JUST [10] achieves comparable F1 scores inTopic nodes, but
reports low F1 scores inAuthor nodes because that method does not
consider the Paper −Topic relations and Paper −Author relations
separately. However, BHIN2vec distinguishes Paper −Author rela-
tions and Paper −Topic relations, which results in the improvement
in Author node classification. To understand how this mechanism
works, we visualize the transition probability from paper to the
other types in Figure 6. In the early stage of training, BHIN2vec
samples equal number of all possible relations in the random walks.
As the Paper −Topic relation becomes well reflected in the embed-
ding space, the stochastic matrix is trained with this information
and the transition probability for that relation decreases. Therefore,
a random walk generated from BHIN2vec contains all possible re-
lation type proportional to the loss value, which gives balanced
embedding vectors.

5.3 Recommendation using link prediction
To answer RQ2, we conduct recommendation tasks for all relation
types in various heterogeneous networks.

Evaluation protocol. Given a heterogeneous network, we remove
20% of total edges for the test set. With 80% of remaining edges,
called the training set, we train the node embedding table using
several network embedding methods. We perform recommendation
tasks for all relation types in a network. A recommendation task
recommends a target node for a source node. For example, we
recommend a director for a movie. We add negative examples to
the training set by sampling same number of arbitrary node pairs for
each relation from the network. Using the node pairs and edge, we
create the edge embedding vectors by applying Hadamard function
to two node vectors in the training set [6]. We train a logistic
regression classifier using the edge embedding vectors and evaluate
the hit rate at 10 for the recommendation task, which is widely used
in the recommendation field [5, 9, 22]. Given an edge (vi ,vj ) in test
set, we sample 99 nodes in which the sampled node type is same
as the type of vj . Note that the node pair created with vi doesn’t
occur in both the training set and the test set. Given 99 pairs of
nodes and 1 edge, we create 100 edge embedding vectors and rank
them using the trained classifier. If the edge is in the top-10 ranking
list, we regard this result as successfully recommending the target
node and increase the hit count. We apply this process to all edges
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Table 2: Hit Rate @ 10 on Douban and BlogCatalog

Dataset Douban BlogCatalog

Source node User Movie Actor Director Average User Group AverageTarget node User Movie User Actor Director Movie Movie User Group User

Deepwalk 0.4630 0.2100 0.1200 0.4188 0.5607 0.3883 0.5060 0.3810 0.2079 0.3733 0.4414 0.3409
LINE 0.2577 0.7142 0.5312 0.3672 0.4021 0.2694 0.2993 0.4059 0.4821 0.3734 0.2399 0.3651

HIN2vec 0.3751 0.7790 0.6567 0.5374 0.5590 0.4169 0.4356 0.5371 0.4794 0.4260 0.4109 0.4388
JUST 0.6045 0.4198 0.2664 0.5454 0.6365 0.5051 0.6107 0.5126 0.4631 0.3129 0.2992 0.3584

BHIN2vec 0.6392 0.7925 0.6485 0.6277 0.7334 0.5865 0.7154 0.6776 0.6531 0.4314 0.3709 0.4851

Table 3: Hit rate @ 10 on YAGO

Source Target Deepwalk LINE HIN2vec JUST BHIN2vec

OR LO 0.4874 0.9253 0.9732 0.8914 0.9770
LO OR 0.8620 0.3290 0.8808 0.7311 0.8196
EV LO 0.8491 0.9612 0.9698 0.9612 0.9819
LO EV 0.7935 0.7027 0.8912 0.6649 0.8973
LO LO 0.8866 0.7961 0.9637 0.9306 0.9725
PE OR 0.9453 0.5261 0.9917 0.9832 0.9936
OR PE 0.9786 0.3244 0.9869 0.9715 0.9861
PE PR 0.8103 0.7751 0.9503 0.9445 0.9654
PR PE 0.9094 0.5611 0.8795 0.9113 0.9232
PE WO 0.7524 0.3262 0.8922 0.6490 0.8404
WO PE 0.9293 0.8367 0.9760 0.7903 0.9370
PE PO 0.6667 0.6667 0.6290 0.7333 0.7351
PO PE 0.8409 0.6250 0.8364 0.8409 0.8886
PE LO 0.5175 0.8462 0.9315 0.7679 0.9116
LO PE 0.6653 0.2257 0.6693 0.4601 0.6603
Average 0.7930 0.6285 0.8948 0.8154 0.8993

in the test set and we report the proportion of hit. We report the
average score from 5 repeated trials.

Results. The hit rate at 10 on Douban and BlogCatalog dataset is
reported in the Table 2. We report the average score of all tasks to
measure the overall quality of the embedding vectors. BHIN2vec
gives high hit rates at 10 in overall relations, whereas other methods
cannot learn all relation types in the heterogeneous network evenly.
This result empirically shows that BHIN2vec contains all different
relation types in one embedding vector, which is the answer for
RQ2. Other methods focus on a specific relation. In the Douban
network, Deepwalk [14] focuses on theMovie − Director relation
and LINE [20] focuses on the User −Movie relation. HIN2vec [6]
represents the User −Movie relations well because those relations
are contained mostly in that network. BHIN2vec learns not only
the User − Movie relations but also other minor relations well,
which acts as side information for embedding the User − Movie
relation in the embedding space. Therefore, the hit rate for that
relation is better than HIN2vec does. JUST [10] reports low hit rate
in the User − Movie relations. We conclude that JUST [10] uses
uniform probability when jumping to other types, so random walks
cannot contain enough number of User −Movie relations to train.
BHIN2vec considers the loss value for all possible relation types

(a) BlogCatalog dataset

(b) Douban dataset

Figure 5: Hit rate scores with varying perturbation hyper-
parameter α . Each bar represents a recommendation task.
The source node type and target node type for a task are con-
nected with a hyphen.

and focuses onUser −Movie relations which report high loss value.
We visualize the transition probability from Movie type to other
types (Fig. 6). The probability from Movie to User type increases,
which means that User −Movie relations report a high loss value
compared to other relations. So, BHIN2vec reports high hit rate
score by including enoughUser −Movie relations in the random
walks to train.

In BlogCatalog, BHIN2vec improves both theUser −User task
and theUser −Group task in a balanced way. However, BHIN2vec
reports low hit rate for Group − User task because if the User −
User relations are well represented in the embedding space, the
group can not distinguish between two connected users. Therefore,
User −User relations and User −Group relations show a tradeoff.
We conclude that BHIN2vec finds the equilibrium point in this
situation.

To scale up network size, we report the hit rate on YAGO net-
work in the Table 3. BHIN2vec gives the better average hit rate
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Figure 6: Transition probabilities in the stochastic matrix. We report the transition probabilities that give the highest average
micro F1 score for DBLP and the highest average hit rate score for the other datasets.

than the other methods. Note that BHIN2vec embeds both the
Person − Position relations, which is representative major relation
type, and the Person −Orдanization relations, which is represen-
tative minor relation type, well in the same embedding space. It
means that we resolve the imbalance issue in the heterogeneous
network. However, the hit rates are dropped for some tasks. The
Person −Work relations and the Person − Location relations are
much more complicated than the other relations because the num-
ber of Work and Location nodes are larger than the number of
Orдanization nodes. Therefore, to handle the network which has
many relation types with extremely different complexities in a
balanced way will be our future work.

Sensitivity Analysis. To answer RQ3, we investigate the impact
of perturbation parameter α on recommendation task. In the Figure
5, we report the hit rate with different perturbation parameter α .
In the BlogCatalog network, the average hit rate at 10 increases
as the α increases. So, instead of using a uniform type transition
probability, creating a random walk that contains the relation types
proportional to the task loss is more effective to embed a network.
In the Douban network, we observe that the major relations, i.e.
User −Movie relations, increase as α increases. In the Figure 6, a
random walk contains theUser −Movie relations more. This trend
is intensified as α increases, which results in the improvement of
corresponding recommendation tasks. However, we also observe
that the hit rate at 10 for minor relations decreases as α increases
becauseUser −Movie relation breaks the similarity between other
minor relations. In summary, as α increases, BHIN2vec creates
embedding vectors that contains overall relationships in a balanced
way, but for large networks, the tradeoff between some relation
types exists so that we recommend to use small α to protect the
minor relation types.

6 CONCLUSION
We observe the imbalance issue in the heterogeneous network
and resolve this issue by designing a new heterogeneous network
embedding method. To balance in all possible relation types, we
focus on the relation types that are less trained in the embedding
space. To quantify how much each relation type is trained, we
introduce the idea in multi-task learning. We define virtual tasks in
that each task represents each relation type in the heterogeneous
network. Then, we calculate the loss values for each virtual task by
splitting the skip-gram loss and compute the inverse training ratios
which represent how much each relation type is embedded. To
focus on the tasks which report high loss value, we propose a new
random-walk strategy that samples a random walk that contains
more of less-trained relations. For the compact representation, we
introduce the stochastic matrix in the random-walk strategy and
train that stochastic matrix to store the information in the inverse
training ratio.

We demonstrate that BHIN2vec produces node embeddings that
contains all possible relation types evenly. We use our node em-
beddings to conduct two general tasks: node classification and
recommendation. In node classification, we evaluate the micro F1
and macro F1 score for all node types. Our node embeddings give
better F1 scores for all node types. Especially, our node embeddings
give better F1 scores inAuthor node classification, which addresses
the importance of considering all possible relation types. Also, vi-
sualizing the stochastic matrix, we understand the mechanism of
BHIN2vec. In recommendation, we evaluate the hit rate at 10 in
three different heterogeneous networks. BHIN2vec improves the
hit rate at 10 in overall relation types in three different networks.
In YAGO, BHIN2vec successfully embeds both the major relation
type, i.e. Person −Orдanization relations, and minor relation type,
i.e. Person − Position relations, at the same time. Also, we observe
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the tradeoff between complicated relation types, which will be our
future work.
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