
### **Collaborative Translational Metric Learning** [ICDM 2018]

Chanyoung Park<sup>1</sup>, Donghyun Kim<sup>2</sup>, Xing Xie<sup>3</sup>, Hwanjo Yu<sup>1\*</sup> Dept. of Computer Science and Engineering, POSTECH, South Korea<sup>1</sup> Oath, USA<sup>2</sup> Microsoft Research Asia, China<sup>3</sup> {pcy1302, hwanjoyu}@postech.ac.kr, cartopy@gmail.com, xingx@microsoft.com

\* Corresponding Author

### **Recommender System**

- Movies
- Clothing
- Books
- Friends
- Citation
- Scientific paper
- News article
- TV programs



# How useful is it?

• Want some evidence?





Recommended for You

Amazon.com has new recommendations for you based on <u>items</u> you purchased or told us you own.



The Little Big Fascinate: Your Sherlock Alice in Things: 163 7 Triggers to Holmes [Blu- Wonderland avs to Pursue Persuasion and ray] [Blu-ray] XCELLENCE Captivation



**80% movies** watched came from recommendation

**30% page views** came from recommendation

**38%** more click-through are due to recommendation

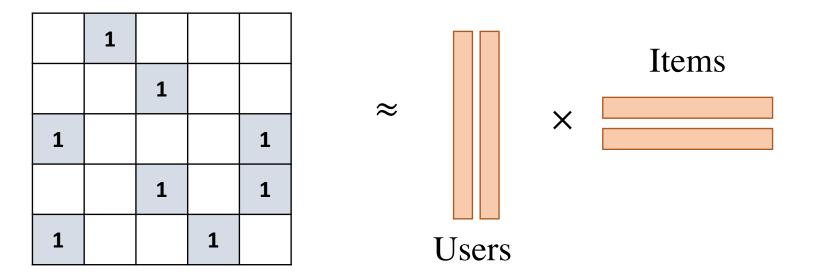
[Gomez-Uribe et al, 2016]

[Brent, 2017]

[Celma & Lamere, ISMIR 2007]

The value of Netflix recommendations is estimated at more than US\$1 billion per year

# **Implicit Feedback**

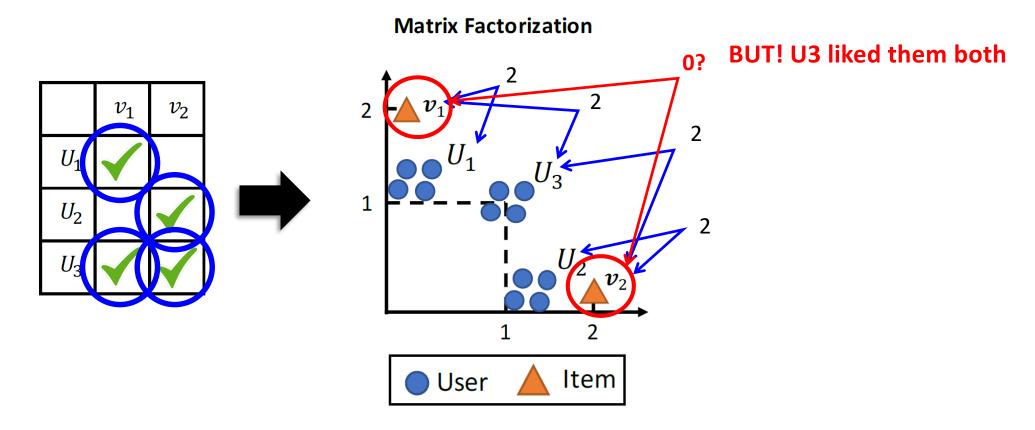

- No explicit ratings
- Any type of interactions between users and items (abundant)



- Only positive feedback is available
- Not about rating prediction,
  - But about modeling the relationships between different user/item pairs

# Matrix Factorization (MF)

• Matrix factorization-based recommendation methods are popular




# **MF violates "Triangle Inequality"**

- MF is based on inner product operation, which violates triangle inequality
- A metric should satisfy...

1.  $d(x,y) \ge 0$ non-negativity or separation axiom 2.  $d(x,y) = 0 \Leftrightarrow x = y$ identity of indiscernibles  $s(x,z) \leq s(x,y) + s(y,z)$ 3. d(x, y) = d(y, x)symmetry 4.  $d(x,z) \leq d(x,y) + d(y,z)$ subadditivity or triangle inequality s(x,y)=1 $s(x,z) \ge s(x,y) + s(y,z)$ 1  $d(\cdot) = -s(\cdot)$ s(y,z)=1s(x,z)=0• Counter example • x = [0,1], y = [1,1], z = [1,0]

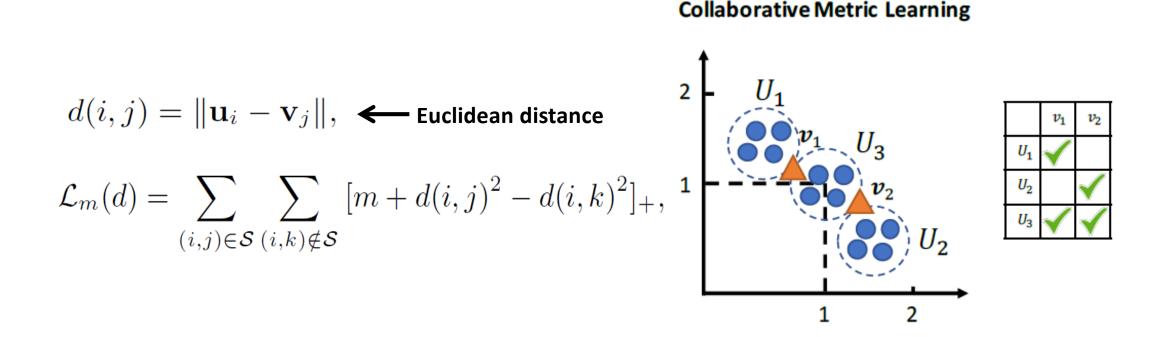
### **MF violates "Triangle Inequality"**



# <u>Violates triangle inequality</u>, therefore, positive relationships between (U3,v1) and (U3,v2) are not propagated to (v1,v2)

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.

## Metric Learning Approach

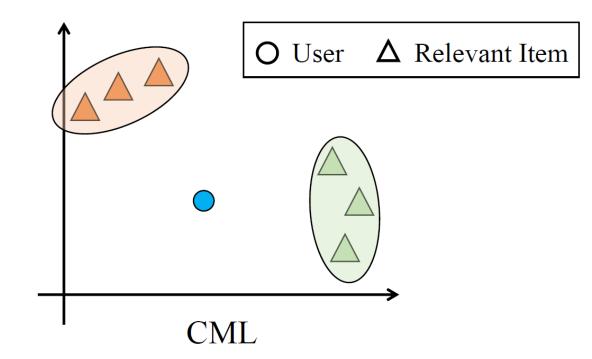

• MF Fails to precisely capture item-item and user-user similarity

#### Solution: Metric learning approaches

- Project users and items into a low-dimensional metric space
  - Triangle inequality is satisfied
- Minimize the distance between each user-item interaction in **Euclidean space** 
  - [Recsys10, KDD12, IJCAI15, WWW17]

### [WWW17] Collaborative Metric Learning (CML)

User should be closer to the items the user likes than those the user does not




#### Expect to capture the similarity among user-user and item-item pairs

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.

# **Limitation of CML**

• Each user is projected to a single point in the metric space



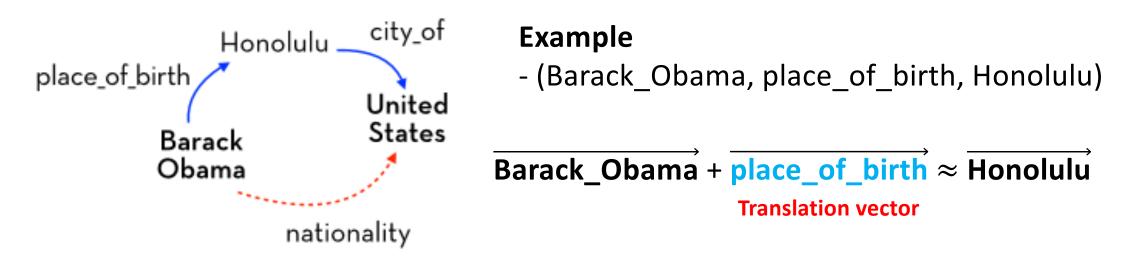
Hard to model the **intensity** and the **heterogeneity** of useritem relationships in implicit feedback

# Intensity and Heterogeneity of Implicit Feedback

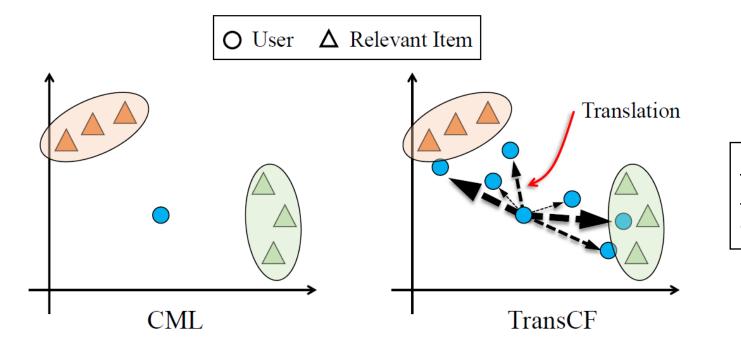
#### Intensity

- A user's implicit feedback <u>does not</u> indicate the equal preference
- Some of the items are more relevant to the user than others
   Intensity of user-item relationships

#### Heterogeneity


- A user may have a <u>wide variety of</u> <u>tastes in different item categories</u>
  - The type of user-item relationship is **heterogeneous** with regard to the user's tastes in various item categories

Preserving a user's intense and heterogeneous relationships with items is not easy when a user is projected to a single point


# Solution: Adopt "translation mechanism"

- Effective for knowledge graph embedding
- Relations between entities are interpreted as <u>translation operations</u> between them
  - if a triplet (*h*, *r*, *t*) is true?
    - $[\vec{h} + \vec{r} \approx \vec{t}] : \vec{t}$  should be a nearest neighbor of  $\vec{h} + \vec{r}$

#### Knowledge Base



### **Translation mechanism**



Intensity: Thickness Heterogeneity: Direction of vectors and angles between them

# **Technical Challenge**

#### Relations are not labeled in implicit feedback

- In knowledge base, relations are labeled
  - ex) place\_of\_birth, city\_of, nationality
- In user-item graph, relations are not labeled (implicit feedback dataset)
  - Every "Observed" is not the same
    - Some items are more preferred by users

Goal: How to model the relationship (r) between user and item

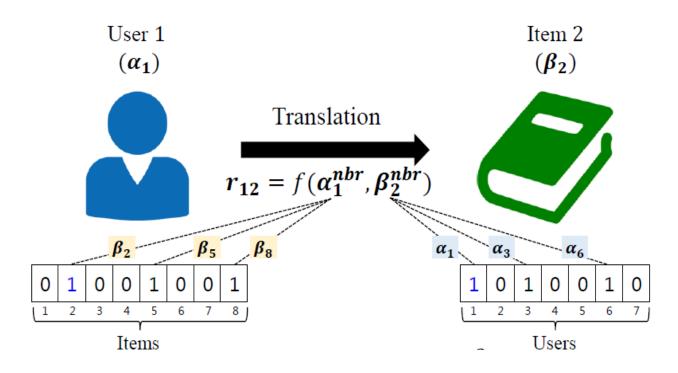
#### Possible solution: Introducing new parameter for each user-item pair (?)

- Prone to over-fitting (too many parameters)
- The collaborative information is not explicitly modeled

### **Proposed Method: Neighborhood approach**

- Neighborhood information is the core idea of CF
  - A user can be represented by the items that the user consumed

$$\boldsymbol{\alpha}_{u}^{nbr} = \frac{1}{|\mathcal{N}_{u}^{\mathcal{I}}|} \sum_{k \in \mathcal{N}_{u}^{\mathcal{I}}} \boldsymbol{\beta}_{k}$$


• An item can be represented by the users that consumed the item

$$\boldsymbol{\beta}_{i}^{nbr} = rac{1}{|\mathcal{N}_{i}^{\mathcal{U}}|} \sum_{k \in \mathcal{N}_{i}^{\mathcal{U}}} \boldsymbol{\alpha}_{k}$$

 Model the relationship (r) between a user and an item by modeling the interaction between the [items the user rated] and [users that rated the item]

$$\boldsymbol{r}_{ui} = f(\boldsymbol{\alpha}_u^{\text{nbr}}, \boldsymbol{\beta}_i^{\text{nbr}})$$

### **Proposed Method: Neighborhood approach**



- Benefit
  - Explicitly integrate the collaborative information into the model
    - CML does it implicitly by satisfying the triangle inequality
  - **Does not introduce any new parameters**

### **Proposed Method: Objective Function**

• Margin-based pairwise ranking criterion: Hinge loss

$$\mathcal{L}(\Theta) = \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{N}_u^{\mathcal{I}}} \sum_{j \notin \mathcal{N}_u^{\mathcal{I}}} [\gamma - s(u, i) + s(u, j)]_+$$

$$s(u,i) = - \|\boldsymbol{\alpha}_{u} + \boldsymbol{r}_{ui} - \boldsymbol{\beta}_{i}\|_{2}^{2}$$

$$\boldsymbol{r}_{ui} = \boldsymbol{\alpha}_{u}^{nbr} \odot \boldsymbol{\beta}_{i}^{nbr}$$

$$\boldsymbol{\alpha}_{u}^{nbr} = \frac{1}{|\mathcal{N}_{u}^{\mathcal{I}}|} \sum_{k \in \mathcal{N}_{u}^{\mathcal{I}}} \boldsymbol{\beta}_{k} \quad \boldsymbol{\beta}_{i}^{nbr} = \frac{1}{|\mathcal{N}_{i}^{\mathcal{U}}|} \sum_{k \in \mathcal{N}_{i}^{\mathcal{U}}} \boldsymbol{\alpha}_{k}$$

$$\bullet N_{u}^{I}: \text{ Set of items rated by user } u$$

$$\bullet N_{i}^{U}: \text{ Set of users who rated by item } i$$

### **Regularizer 1 - Neighborhood regularizer**

- $reg_{nbr}(\Theta)$ : Neighborhood regularizer
  - We implicitly assumed that  $\alpha_u$  can be represented by  $\alpha_u^{nbr}$
  - However, if we can explicitly guide  $\alpha_u$  to be close to  $\alpha_u^{nbr}$ , the neighborhood information will be better reflected into our model

$$reg_{nbr}(\Theta) = \sum_{u \in \mathcal{U}} \left( \boldsymbol{\alpha}_u - \frac{1}{|\mathcal{N}_u^{\mathcal{I}}|} \sum_{k \in \mathcal{N}_u^{\mathcal{I}}} \boldsymbol{\beta}_k \right)^2 + \sum_{i \in \mathcal{I}} \left( \boldsymbol{\beta}_i - \frac{1}{|\mathcal{N}_i^{\mathcal{U}}|} \sum_{k \in \mathcal{N}_i^{\mathcal{U}}} \boldsymbol{\alpha}_k \right)^2$$

### **Regularizer 2 - Distance regularizer**

- $reg_{dist}(\Theta)$ : Distance regularizer
  - Currently, item embedding is the <u>nearest neighbor</u> of the translated user embedding
    - Positive item will be pulled to user by pushing the negative item away from the user → Push loss
  - However, the relations become more complex as the number of user-item interactions grows
    - Crucial to guarantee that the <u>actual distance</u> between them is small  $\rightarrow$  **Pull loss**

$$reg_{dist}(\Theta) = \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{N}_u^{\mathcal{I}}} -s(u,i) = \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{N}_u^{\mathcal{I}}} \|\boldsymbol{\alpha}_u + \boldsymbol{r}_{ui} - \boldsymbol{\beta}_i\|_2^2$$

 $\mathcal{J}(\Theta) = (\mathcal{L}(\Theta) + \lambda_{\rm nbr} \cdot reg_{\rm nbr}(\Theta) + \lambda_{\rm dist} \cdot reg_{\rm dist}(\Theta))$ 

Margin-based loss

Regularizers

#### Optimized by stochastic gradient descent (SGD)

### **Evaluation: Dataset**

| Dataset                     | #Users | #Items. | #Inter.   | Density | Rat.    | #Cat. |  |
|-----------------------------|--------|---------|-----------|---------|---------|-------|--|
| Delicious                   | 1,050  | 1,196   | 7,698     | 0.61%   | -       | -     |  |
| Tradesy                     | 3,352  | 5,547   | 32,710    | 0.13%   |         |       |  |
| Ciao                        | 6,760  | 11,166  | 146,996   | 0.19%   | 1-5     | 28    |  |
| Amazon                      | 59,089 | 17,969  | 332,236   | 0.03%   | 1-5     | 45    |  |
| Bookcr                      | 19,571 | 39,702  | 605,178   | 0.08%   | 1-10    | - 🛧   |  |
| Flixster                    | 69,482 | 25,687  | 8,000,690 | 0.45%   | 0.5-5.0 | -     |  |
| Pinterest                   | 55,187 | 9,329   | 1,462,895 | 0.28%   | 7-      | -     |  |
| To verify the heterogeneity |        |         |           |         |         |       |  |
| To verify the neterogeneity |        |         |           |         |         |       |  |

#### To verify the intensity

- Considered each observed rating as
- an implicit feedback record

### **Baseline Methods**

#### 1. Learning-to-rank baselines

- Pointwise methods: eALS [SIGIR 2016], NeuMF [WWW 2017]
- Pairwise methods: BPR [UAI 2009], AoBPR [WSDM 2014]

#### 2. Neighborhood-based baselines

• FISM [KDD 2013], CDAE [WSDM 2016]

#### 3. Metric learning-based baselines

- CML [WWW 2017]
  - $s(u,i) = -\|\boldsymbol{\alpha}_u \boldsymbol{\beta}_i\|^2$
- Ablation of TransCF
  - TransCF<sup>dot</sup>

• 
$$s(u,i) = (\boldsymbol{\alpha}_u + \boldsymbol{r}_{ui})^T \boldsymbol{\beta}_i$$

- TransCF<sup>alt</sup> (without neighborhood information)
  - $s(u,i) = -\|\boldsymbol{\alpha}_u + \boldsymbol{r}_{ui} \boldsymbol{\beta}_i\|^2$ ,  $\boldsymbol{r}_{ui} = f(\boldsymbol{\alpha}_u, \boldsymbol{\beta}_i)$
- TransCF
  - $s(u,i) = -\|\boldsymbol{\alpha}_u + \boldsymbol{r}_{ui} \boldsymbol{\beta}_i\|^2$ ,  $\boldsymbol{r}_{ui} = f(\boldsymbol{\alpha}_u^{nbr}, \boldsymbol{\beta}_i^{nbr})$

### **Performance Comparison**

| Datasets          | Metrics                      | BPR                                  | FISM                                 | AoBPR                                | eALS                                 | CDAE                                 | NeuMF                                | CML                                                                 | TransCF <sup>dd</sup>                | $^{ m ot}$ TransCF $^{ m all}$       | TransCF                              | Imp.                                 |
|-------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Delicious         | H@10                         | 0.1981                               | 0.2203                               | 0.2243                               | 0.1992                               | 0.1319                               | 0.1164                               | 0.2470                                                              | 0.2150                               | 0.2174                               | 0.2586                               | 4.70%                                |
|                   | H@20                         | 0.3177                               | 0.3391                               | 0.3602                               | 0.2942                               | 0.2414                               | 0.2171                               | 0.3649                                                              | 0.3377                               | 0.3084                               | 0.3786                               | 3.75%                                |
|                   | N@10                         | 0.1122                               | 0.1124                               | 0.1114                               | 0.1035                               | 0.0674                               | 0.0558                               | 0.1389                                                              | 0.1101                               | 0.1281                               | 0.1475                               | 6.19%                                |
|                   | N@20                         | 0.1418                               | 0.1424                               | 0.1452                               | 0.1271                               | 0.0949                               | 0.0789                               | 0.1678                                                              | 0.1412                               | 0.1494                               | 0.1781                               | 6.14%                                |
| Tradesy           | H@10                         | 0.2481                               | 0.2676                               | 0.2597                               | 0.2058                               | 0.1652                               | 0.1167                               | 0.3031                                                              | 0.2846                               | 0.2648                               | 0.3198                               | 5.51%                                |
|                   | H@20                         | 0.4174                               | 0.4109                               | 0.4256                               | 0.3314                               | 0.2867                               | 0.2290                               | 0.4413                                                              | 0.4266                               | 0.3823                               | 0.4505                               | 2.08%                                |
|                   | N@10                         | 0.1248                               | 0.1309                               | 0.1300                               | 0.1042                               | 0.0831                               | 0.0538                               | 0.1685                                                              | 0.1449                               | 0.1466                               | 0.1767                               | 4.87%                                |
|                   | N@20                         | 0.1673                               | 0.1670                               | 0.1715                               | 0.1356                               | 0.1136                               | 0.0817                               | 0.2031                                                              | 0.1806                               | 0.1760                               | 0.2095                               | 3.15%                                |
| Ciao              | H@10                         | 0.1569                               | 0.2100                               | 0.1873                               | 0.1419                               | 0.1770                               | 0.1535                               | 0.2085                                                              | 0.2011                               | 0.1991                               | 0.2292                               | 9.93%                                |
|                   | H@20                         | 0.2811                               | 0.3482                               | 0.3146                               | 0.2570                               | 0.3153                               | 0.2788                               | 0.3337                                                              | 0.3185                               | 0.3270                               | 0.3740                               | 12.08%                               |
|                   | N@10                         | 0.0751                               | 0.1027                               | 0.0891                               | 0.0670                               | 0.0862                               | 0.0741                               | 0.1053                                                              | 0.1017                               | 0.0989                               | 0.1167                               | 10.83%                               |
|                   | N@20                         | 0.1063                               | 0.1374                               | 0.1209                               | 0.0957                               | 0.1208                               | 0.1040                               | 0.1358                                                              | 0.1311                               | 0.1309                               | 0.1525                               | 12.30%                               |
| Book-<br>crossing | H@10<br>H@20<br>N@10<br>N@20 | 0.2425<br>0.3761<br>0.1250<br>0.1585 | 0.2178<br>0.3938<br>0.1002<br>0.1444 | 0.2563<br>0.3916<br>0.1338<br>0.1676 | 0.1655<br>0.2864<br>0.0791<br>0.1093 | 0.2244<br>0.3610<br>0.1164<br>0.1506 | 0.2286<br>0.3747<br>0.1158<br>0.1482 | $\begin{array}{c} 0.2885 \\ 0.4053 \\ 0.1663 \\ 0.1956 \end{array}$ | 0.2802<br>0.3932<br>0.1618<br>0.1903 | 0.2828<br>0.4069<br>0.1578<br>0.1890 | 0.3329<br>0.4744<br>0.1865<br>0.2221 | 15.39%<br>17.05%<br>12.15%<br>13.55% |
| Amazon<br>C&A     | H@10<br>H@20<br>N@10<br>N@20 | 0.2489<br>0.3821<br>0.1276<br>0.1610 | 0.2470<br>0.3782<br>0.1247<br>0.1577 | 0.2646<br>0.3946<br>0.1391<br>0.1718 | 0.2161<br>0.3480<br>0.1064<br>0.0739 | 0.2817<br>0.4117<br>0.1613<br>0.1939 | 0.1317<br>0.2390<br>0.0613<br>0.0880 | 0.3011<br>0.4123<br>0.1752<br>0.2031                                | 0.3003<br>0.4184<br>0.1648<br>0.1945 | 0.3184<br>0.4509<br>0.1766<br>0.2094 | 0.3436<br>0.4658<br>0.2019<br>0.2323 | 14.11%<br>12.98%<br>15.24%<br>14.38% |

#### TransCF > CML

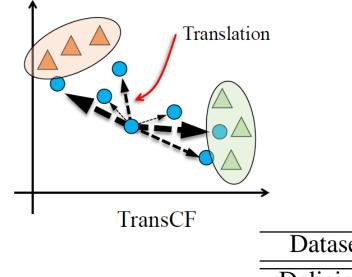
 Benefit of the translation vectors that translate each user toward items according to the user's relationships with those items

### **Performance Comparison**

| Datasets          | Metrics                      | BPR                                                                 | FISM                                                                | AoBPR                                                               | eALS                                 | CDAE                                 | NeuMF                                                               | CML                                                                 | TransCF <sup>dot</sup>               | $TransCF^{\mathrm{alt}}$             | TransCF                              | Imp.                                 |
|-------------------|------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Delicious         | H@10<br>H@20<br>N@10<br>N@20 | 0.1981<br>0.3177<br>0.1122<br>0.1418                                | 0.2203<br>0.3391<br>0.1124<br>0.1424                                | $\begin{array}{c} 0.2243 \\ 0.3602 \\ 0.1114 \\ 0.1452 \end{array}$ | 0.1992<br>0.2942<br>0.1035<br>0.1271 | 0.1319<br>0.2414<br>0.0674<br>0.0949 | 0.1164<br>0.2171<br>0.0558<br>0.0789                                | $\begin{array}{c} 0.2470 \\ 0.3649 \\ 0.1389 \\ 0.1678 \end{array}$ | 0.2150<br>0.3377<br>0.1101<br>0.1412 | 0.2174<br>0.3084<br>0.1281<br>0.1494 | 0.2586<br>0.3786<br>0.1475<br>0.1781 | 4.70%<br>3.75%<br>6.19%<br>6.14%     |
| Tradesy           | H@10<br>H@20<br>N@10<br>N@20 | $\begin{array}{c} 0.2481 \\ 0.4174 \\ 0.1248 \\ 0.1673 \end{array}$ | $\begin{array}{c} 0.2676 \\ 0.4109 \\ 0.1309 \\ 0.1670 \end{array}$ | 0.2597<br>0.4256<br>0.1300<br>0.1715                                | 0.2058<br>0.3314<br>0.1042<br>0.1356 | 0.1652<br>0.2867<br>0.0831<br>0.1136 | 0.1167<br>0.2290<br>0.0538<br>0.0817                                | 0.3031<br>0.4413<br>0.1685<br>0.2031                                | 0.2846<br>0.4266<br>0.1449<br>0.1806 | 0.2648<br>0.3823<br>0.1466<br>0.1760 | 0.3198<br>0.4505<br>0.1767<br>0.2095 | 5.51%<br>2.08%<br>4.87%<br>3.15%     |
| Ciao              | H@10<br>H@20<br>N@10<br>N@20 | 0.1569<br>0.2811<br>0.0751<br>0.1063                                | 0.2100<br>0.3482<br>0.1027<br>0.1374                                | 0.1873<br>0.3146<br>0.0891<br>0.1209                                | 0.1419<br>0.2570<br>0.0670<br>0.0957 | 0.1770<br>0.3153<br>0.0862<br>0.1208 | 0.1535<br>0.2788<br>0.0741<br>0.1040                                | 0.2085<br>0.3337<br>0.1053<br>0.1358                                | 0.2011<br>0.3185<br>0.1017<br>0.1311 | 0.1991<br>0.3270<br>0.0989<br>0.1309 | 0.2292<br>0.3740<br>0.1167<br>0.1525 | 9.93%<br>12.08%<br>10.83%<br>12.30%  |
| Book-<br>crossing | H@10<br>H@20<br>N@10<br>N@20 | 0.2425<br>0.3761<br>0.1250<br>0.1585                                | 0.2178<br>0.3938<br>0.1002<br>0.1444                                | 0.2563<br>0.3916<br>0.1338<br>0.1676                                | 0.1655<br>0.2864<br>0.0791<br>0.1093 | 0.2244<br>0.3610<br>0.1164<br>0.1506 | 0.2286<br>0.3747<br>0.1158<br>0.1482                                | $\begin{array}{c} 0.2885 \\ 0.4053 \\ 0.1663 \\ 0.1956 \end{array}$ | 0.2802<br>0.3932<br>0.1618<br>0.1903 | 0.2828<br>0.4069<br>0.1578<br>0.1890 | 0.3329<br>0.4744<br>0.1865<br>0.2221 | 15.39%<br>17.05%<br>12.15%<br>13.55% |
| Amazon<br>C&A     | H@10<br>H@20<br>N@10<br>N@20 | 0.2489<br>0.3821<br>0.1276<br>0.1610                                | 0.2470<br>0.3782<br>0.1247<br>0.1577                                | 0.2646<br>0.3946<br>0.1391<br>0.1718                                | 0.2161<br>0.3480<br>0.1064<br>0.0739 | 0.2817<br>0.4117<br>0.1613<br>0.1939 | $\begin{array}{c} 0.1317 \\ 0.2390 \\ 0.0613 \\ 0.0880 \end{array}$ | 0.3011<br>0.4123<br>0.1752<br>0.2031                                | 0.3003<br>0.4184<br>0.1648<br>0.1945 | 0.3184<br>0.4509<br>0.1766<br>0.2094 | 0.3436<br>0.4658<br>0.2019<br>0.2323 | 14.11%<br>12.98%<br>15.24%<br>14.38% |

#### • CML > TransCF<sup>alt</sup>

• Translation vectors should be carefully designed, otherwise the performance will rather deteriorate


### **Performance Comparison**

| Datasets          | Metrics                      | BPR                                                                 | FISM                                                                | AoBPR                                | eALS                                                                | CDAE                                 | NeuMF                                | CML                                  | TransCF <sup>dot</sup>               | $TransCF^{\mathrm{alt}}$             | TransCF                              | Imp.                                 |
|-------------------|------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Delicious         | H@10<br>H@20<br>N@10<br>N@20 | 0.1981<br>0.3177<br>0.1122<br>0.1418                                | 0.2203<br>0.3391<br>0.1124<br>0.1424                                | 0.2243<br>0.3602<br>0.1114<br>0.1452 | 0.1992<br>0.2942<br>0.1035<br>0.1271                                | 0.1319<br>0.2414<br>0.0674<br>0.0949 | 0.1164<br>0.2171<br>0.0558<br>0.0789 | 0.2470<br>0.3649<br>0.1389<br>0.1678 | 0.2150<br>0.3377<br>0.1101<br>0.1412 | 0.2174<br>0.3084<br>0.1281<br>0.1494 | 0.2586<br>0.3786<br>0.1475<br>0.1781 | 4.70%<br>3.75%<br>6.19%<br>6.14%     |
| Tradesy           | H@10<br>H@20<br>N@10<br>N@20 | $\begin{array}{c} 0.2481 \\ 0.4174 \\ 0.1248 \\ 0.1673 \end{array}$ | 0.2676<br>0.4109<br>0.1309<br>0.1670                                | 0.2597<br>0.4256<br>0.1300<br>0.1715 | $\begin{array}{c} 0.2058 \\ 0.3314 \\ 0.1042 \\ 0.1356 \end{array}$ | 0.1652<br>0.2867<br>0.0831<br>0.1136 | 0.1167<br>0.2290<br>0.0538<br>0.0817 | 0.3031<br>0.4413<br>0.1685<br>0.2031 | 0.2846<br>0.4266<br>0.1449<br>0.1806 | 0.2648<br>0.3823<br>0.1466<br>0.1760 | 0.3198<br>0.4505<br>0.1767<br>0.2095 | 5.51%<br>2.08%<br>4.87%<br>3.15%     |
| Ciao              | H@10<br>H@20<br>N@10<br>N@20 | 0.1569<br>0.2811<br>0.0751<br>0.1063                                | 0.2100<br>0.3482<br>0.1027<br>0.1374                                | 0.1873<br>0.3146<br>0.0891<br>0.1209 | 0.1419<br>0.2570<br>0.0670<br>0.0957                                | 0.1770<br>0.3153<br>0.0862<br>0.1208 | 0.1535<br>0.2788<br>0.0741<br>0.1040 | 0.2085<br>0.3337<br>0.1053<br>0.1358 | 0.2011<br>0.3185<br>0.1017<br>0.1311 | 0.1991<br>0.3270<br>0.0989<br>0.1309 | 0.2292<br>0.3740<br>0.1167<br>0.1525 | 9.93%<br>12.08%<br>10.83%<br>12.30%  |
| Book-<br>crossing | H@10<br>H@20<br>N@10<br>N@20 | 0.2425<br>0.3761<br>0.1250<br>0.1585                                | 0.2178<br>0.3938<br>0.1002<br>0.1444                                | 0.2563<br>0.3916<br>0.1338<br>0.1676 | 0.1655<br>0.2864<br>0.0791<br>0.1093                                | 0.2244<br>0.3610<br>0.1164<br>0.1506 | 0.2286<br>0.3747<br>0.1158<br>0.1482 | 0.2885<br>0.4053<br>0.1663<br>0.1956 | 0.2802<br>0.3932<br>0.1618<br>0.1903 | 0.2828<br>0.4069<br>0.1578<br>0.1890 | 0.3329<br>0.4744<br>0.1865<br>0.2221 | 15.39%<br>17.05%<br>12.15%<br>13.55% |
| Amazon<br>C&A     | H@10<br>H@20<br>N@10<br>N@20 | 0.2489<br>0.3821<br>0.1276<br>0.1610                                | $\begin{array}{c} 0.2470 \\ 0.3782 \\ 0.1247 \\ 0.1577 \end{array}$ | 0.2646<br>0.3946<br>0.1391<br>0.1718 | $\begin{array}{c} 0.2161 \\ 0.3480 \\ 0.1064 \\ 0.0739 \end{array}$ | 0.2817<br>0.4117<br>0.1613<br>0.1939 | 0.1317<br>0.2390<br>0.0613<br>0.0880 | 0.3011<br>0.4123<br>0.1752<br>0.2031 | 0.3003<br>0.4184<br>0.1648<br>0.1945 | 0.3184<br>0.4509<br>0.1766<br>0.2094 | 0.3436<br>0.4658<br>0.2019<br>0.2323 | 14.11%<br>12.98%<br>15.24%<br>14.38% |

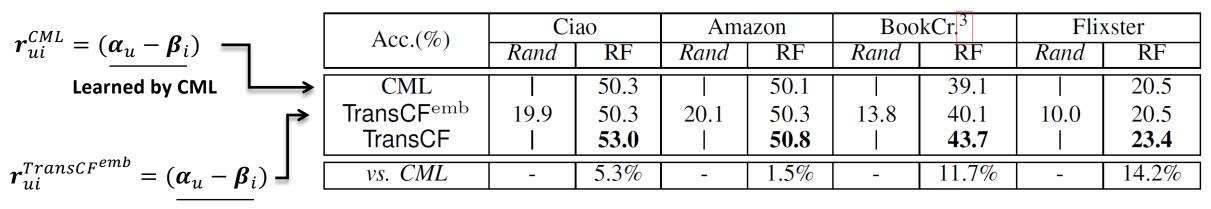
#### • TransCF > TransCF<sup>alt</sup>

Incorporating the <u>neighborhood information</u> is crucial in collaborative filtering

### **Translation in action**



We want to show...


$$\|\boldsymbol{\alpha}_{\boldsymbol{u}}-\boldsymbol{\beta}_{\boldsymbol{i}}\|_{2}^{2} > \|\boldsymbol{\alpha}_{\boldsymbol{u}}+\boldsymbol{r}_{\boldsymbol{u}\boldsymbol{i}}-\boldsymbol{\beta}_{\boldsymbol{i}}\|_{2}^{2}$$

| Dataset                                 | Obs.                                 | Unobs.                               | Dataset                         | Obs.                       | Unobs.                    |
|-----------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------|---------------------------|
| Delicious<br>Tradesy<br>Ciao<br>Bookcr. | 64.63%<br>56.02%<br>54.63%<br>55.42% | 43.75%<br>43.01%<br>38.42%<br>35.57% | Amazon<br>Pinterest<br>Flixster | 75.57%<br>36.25%<br>22.24% | 31.96%<br>33.08%<br>2.88% |

# Each translated user is placed closer to the observed (positive) items than to the unobserved (negative) items.

# **Intensity** is encoded in Translation vectors

- **Assumption**: Rating information is a proxy for the intensity of user-item relationships
- Task: Rating prediction with translation vector



Learned by TransCF

#### <u>Rating prediction accuracy: TransCF > CML, TransCF<sup>emb</sup></u>

Intensity of user-item relationships is best encoded in the translation vectors learned by TransCF

### **Intensity** is encoded in Translation vectors

- High rating  $\rightarrow$  High intensity  $\rightarrow$  users are translated closer
- Expectation: more observed interactions to satisfy  $\|\boldsymbol{\alpha}_u \boldsymbol{\beta}_i\|_2^2 > \|\boldsymbol{\alpha}_u + \boldsymbol{r}_{ui} \boldsymbol{\beta}_i\|_2^2$ in higher rating groups.

|          |         | _     |       | Rating |       |       |             |
|----------|---------|-------|-------|--------|-------|-------|-------------|
| BookCr.  | 1-4     | 5     | 6     | 7      | 8     | 9     | 10          |
| Acc.     | 55.3%   | 52.7% | 55.2% | 56.1%  | 57.2% | 58.4% | 58.8%       |
| Portion  | 3.8%    | 10.3% | 7.9%  | 17.0%  | 24.5% | 17.3% | 19.2%       |
| Flixster | 0.5-2.5 | 3.0   | 3.5   | 4.0    | 4.5   | 5.0   |             |
| Acc.     | 19.6%   | 19.9% | 19.9% | 22.2%  | 25.7% | 27.2% |             |
| Portion  | 17 3%   | 17 0% | 16.8% | 19.6%  | 101%  | 19.2% |             |
| Ciao     | 1       | 2     | 3     | 4      | 5     |       |             |
| Acc.     | 61.5%   | 51.4% | 55.4% | 52.2%  | 55.4% | Does  | not agree   |
| Portion  | 4.8%    | 5.1%  | 11.4% | 29.0%  | 49.7% |       | ange of ra  |
| Amazon   | 1       | 2     | 3     | 4      | 5     | · ·   | Aajority be |
| Acc.     | 76.7%   | 76.3% | 75.7% | 75.2%  | 75.4% | -     | ard to infe |
| Portion  | 7.0%    | 5.7%  | 10.7% | 20.1%  | 56.5% |       |             |

High rating  $\rightarrow$  More interactions satisfy  $\|oldsymbol{lpha}_u-oldsymbol{eta}_i\|_2^2>\|oldsymbol{lpha}_u+oldsymbol{r}_{ui}-oldsymbol{eta}_i\|_2^2$ 

gree with our expectation

- of ratings is small
- ty belongs to 4,5
- infer users' fine-grained preferences

### **Heterogeneity** is encoded in Translation vectors

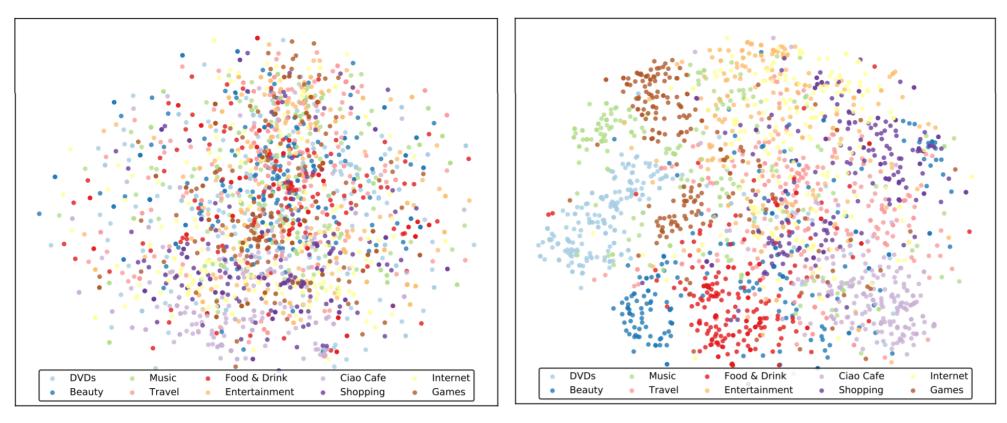
- **<u>Assumption</u>**: Item category = Users' taste
- Task: Item category classification using  $r_{ui}$  and  $oldsymbol{eta}_i$

| Dataset | Method                 | Rand.  | Random Forest        |
|---------|------------------------|--------|----------------------|
|         | CML                    |        | $67.86 \pm 0.47\%$   |
| Ciao    | TransCF <sup>emb</sup> | 10.01% | $67.27 \pm 0.28\%$   |
|         | TransCF                |        | <b>80.97</b> ±0.73%  |
| Amazon  | CML                    |        | 54.26±0.74%          |
| C&A     | TransCF <sup>emb</sup> | 10.40% | $54.85 {\pm} 0.51\%$ |
| CaA     | TransCF                |        | <b>81.24</b> ±0.46%  |

(a) Classification on translation vectors  $(r_{ui})$ .

#### TransCF > CML

- Translation vectors  $(r_{ui})$  encode the category information  $\rightarrow$  Heterogeneity of the user-item relationships


| Dataset       | Method         | Rand.  | Random Forest                                                       |
|---------------|----------------|--------|---------------------------------------------------------------------|
| Ciao          | CML<br>TransCF | 10.92% | $80.41 \pm 1.59\%$<br>$81.61 \pm 1.54\%$                            |
| Amazon<br>C&A | CML<br>TransCF | 9.40%  | $\begin{array}{c} 47.94 \pm 3.34\% \\ 47.90 \pm 2.54\% \end{array}$ |

(b) Classification on item embeddings  $(\beta_i)$ .

#### $\textbf{TransCF} \approx \textbf{CML}$

- Superior performance of TransCF is not derived from the high-quality embedding vectors

### **Heterogeneity** is encoded in Translation vectors



(a) Visualization of  $r_{ui}^{CML}$ 

(b) Visualization of  $r_{ui}^{\text{TransCF}}$ 

Translation vectors **capture item category information** (without given any category information)