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Recommender System
• Movies
• Clothing
• Books
• Friends
• Citation
• Scientific paper
• News article
• TV programs
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How useful is it?
• Want some evidence? 

38% more click-through are due to 
recommendation

[Celma & Lamere, ISMIR 2007]

30% page views came 
from recommendation

[Brent, 2017]

80% movies watched came from 
recommendation

[Gomez-Uribe et al, 2016]

The value of Netflix recommendations is estimated at more than US$1 billion per year



Implicit Feedback
• No explicit ratings
• Any type of interactions between users and items (abundant)

• Only positive feedback is available 
• Not about rating prediction,

• But about modeling the relationships between different user/item pairs



Matrix Factorization (MF)
• Matrix factorization-based recommendation methods are popular
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MF violates “Triangle Inequality”
• MF is based on inner product operation, which violates triangle inequality

• Counter example
• 𝑥 = 0,1 , 𝑦 = 1,1 , 𝑧 = [1,0]
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𝒛

𝒚

𝑑 ⋅ = −𝑠(⋅)

𝑠 𝑥, 𝑧 ≥ 𝑠 𝑥, 𝑦 + 𝑠 𝑦, 𝑧
𝑠 𝑥, 𝑦 =1

𝑠 𝑦, 𝑧 =1𝑠 𝑥, 𝑧 =0

𝑠 𝑥, 𝑧 ≤ 𝑠 𝑥, 𝑦 + 𝑠 𝑦, 𝑧

• A metric should satisfy…



MF violates “Triangle Inequality”
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Violates triangle inequality, therefore, positive relationships between 
(U3,v1) and (U3,v2) are not propagated to (v1,v2)

BUT! U3 liked them both
2
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0?

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.



Metric Learning Approach
• MF Fails to precisely capture item-item and user-user similarity
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• Solution: Metric learning approaches
• Project users and items into a low-dimensional metric space

• Triangle inequality is satisfied
• Minimize the distance between each user-item interaction in Euclidean space 

• [Recsys10, KDD12, IJCAI15, WWW17]



[WWW17] Collaborative Metric Learning (CML)
• User should be closer to the items the user likes than those the user does not

Expect to capture the similarity among user-user and item-item pairs

18

Source: Hsieh, Cheng-Kang, et al. "Collaborative metric learning." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.

Euclidean distance



Limitation of CML
• Each user is projected to a single point in the metric space
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Hard to model the intensity and the heterogeneity of user–
item relationships in implicit feedback



Intensity and Heterogeneity of Implicit Feedback
Intensity
• A user’s implicit feedback does not 

indicate the equal preference
• Some of the items are more 

relevant to the user than others
Intensity of user-item relationships
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Heterogeneity
• A user may have a wide variety of 

tastes in different item categories
• The type of user–item relationship 

is heterogeneous with regard to 
the user’s tastes in various item 
categories

Preserving a user’s intense and heterogeneous relationships with items is 
not easy when a user is projected to a single point



Solution: Adopt “translation mechanism”
• Effective for knowledge graph embedding
• Relations between entities are interpreted as translation operations

between them
• if a triplet ℎ, 𝑟, 𝑡 is true?

• [𝒉 + 𝒓 ≈ �⃗�] : �⃗� should be a nearest neighbor of 𝒉 + 𝒓
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Example
- (Barack_Obama, place_of_birth, Honolulu)

Barack_Obama + place_of_birth ≈ Honolulu
Translation vector



Translation mechanism
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Intensity: Thickness
Heterogeneity: Direction of vectors 
and angles between them



Technical Challenge
• Relations are not labeled in implicit feedback

• In knowledge base, relations are labeled
• ex) place_of_birth, city_of, nationality

• In user-item graph, relations are not labeled (implicit feedback dataset)
• Every “Observed” is not the same

• Some items are more preferred by users

Possible solution: Introducing new parameter for each user-item pair (?)
• Prone to over-fitting (too many parameters)
• The collaborative information is not explicitly modeled
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Goal: How to model the relationship (𝒓) between user and item



Proposed Method: Neighborhood approach

• A user can be represented by the items that the user consumed

• An item can be represented by the users that consumed the item

• Model the relationship (𝒓) between a user and an item by modeling the interaction 
between the [items the user rated] and [users that rated the item]

• Neighborhood information is the core idea of CF
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Proposed Method: Neighborhood approach

• Benefit
• Explicitly integrate the collaborative information into the model

• CML does it implicitly by satisfying the triangle inequality
• Does not introduce any new parameters
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Proposed Method: Objective Function
• Margin-based pairwise ranking criterion: Hinge loss

• 𝑁@A : Set of items rated by user 𝑢
• 𝑁C

D: Set of users who rated by item 𝑖
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Regularizer 1 - Neighborhood regularizer

• 𝑟𝑒𝑔HIJ Θ : Neighborhood regularizer
• We implicitly assumed that 𝛼@ can be represented by 𝛼@HIJ

• However, if we can explicitly guide 𝛼@ to be close to 𝛼@HIJ, the neighborhood 
information will be better reflected into our model
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• 𝑟𝑒𝑔MCNO Θ : Distance regularizer
• Currently, item embedding is the nearest neighbor of the translated user 

embedding
• Positive item will be pulled to user by pushing the negative item away from 

the user → Push loss

• However, the relations become more complex as the number of user-item 
interactions grows

• Crucial to guarantee that the actual distance between them is small → Pull loss

Regularizer 2 - Distance regularizer
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Proposed Method: Optimization
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Optimized by stochastic gradient descent (SGD)

Margin-based loss Regularizers



Evaluation: Dataset
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To verify the heterogeneity

To verify the intensity
- Considered each observed rating as 
an implicit feedback record



Baseline Methods
1. Learning-to-rank baselines

• Pointwise methods: eALS [SIGIR 2016], NeuMF [WWW 2017]
• Pairwise methods: BPR [UAI 2009], AoBPR [WSDM 2014]

2. Neighborhood-based baselines
• FISM [KDD 2013], CDAE [WSDM 2016]

3. Metric learning-based baselines 
• CML [WWW 2017]

• 𝑠 𝑢, 𝑖 = − 𝜶@ − 𝜷C R

• Ablation of TransCF
• TransCFdot

• 𝑠 𝑢, 𝑖 = 𝜶@ + 𝒓@C S𝜷C
• TransCFalt (without neighborhood information)

• 𝑠 𝑢, 𝑖 = − 𝜶@ + 𝒓@C − 𝜷C R, 𝒓@C = 𝑓(𝜶@, 𝜷C)
• TransCF

• 𝑠 𝑢, 𝑖 = − 𝜶@ + 𝒓@C − 𝜷C R, 𝒓@C = 𝑓(𝜶@𝒏𝒃𝒓, 𝜷C
𝒏𝒃𝒓)
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Performance Comparison
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• TransCF > CML
• Benefit of the translation vectors that translate each user toward 

items according to the user’s relationships with those items



Performance Comparison
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• CML > TransCFalt

• Translation vectors should be carefully designed, otherwise the 
performance will rather deteriorate



Performance Comparison
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• TransCF > TransCFalt

• Incorporating the neighborhood information is crucial in 
collaborative filtering



Translation in action
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We want to show…

Each translated user is placed closer to the observed (positive) items 
than to the unobserved (negative) items.



Intensity is encoded in Translation vectors
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• Assumption: Rating information is a proxy for the intensity of user–item relationships
• Task: Rating prediction with translation vector

𝒓@C
WXY = (𝜶@ − 𝜷C)

𝒓@CSJZHNW[
\]^

= (𝜶@ − 𝜷C)

Learned by CML

Learned by TransCF

Rating prediction accuracy: TransCF > CML, TransCFemb

Intensity of user–item relationships is best encoded in the translation vectors learned by TransCF



Intensity is encoded in Translation vectors
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• High rating → High intensity → users are translated closer
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• Expectation: more observed interactions to satisfy
in higher rating groups.

High rating → More 
interactions satisfy

Does not agree with our expectation
1) Range of ratings is small
2) Majority belongs to 4,5
→ Hard to infer users’ fine-grained preferences



Heterogeneity is encoded in Translation vectors
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• Assumption: Item category = Users’ taste
• Task: Item category classification using 𝒓@C and 𝜷C

TransCF > CML
- Translation vectors (𝒓@C) encode the category 
information → Heterogeneity of the user–item 

relationships

TransCF ≈ CML
- Superior performance of TransCF is not derived 

from the high-quality embedding vectors



Heterogeneity is encoded in Translation vectors
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Translation vectors capture item category information
(without given any category information)


