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Abstract
Users’ behaviors observed in many web-based ap-
plications are usually heterogeneous, so modeling
their behaviors considering the interplay among
multiple types of actions is important. However,
recent collaborative filtering (CF) methods based
on a metric learning approach cannot learn multi-
ple types of user actions, because they are devel-
oped for only a single type of user actions. This pa-
per proposes a novel metric learning method, called
METAS, to jointly model heterogeneous user be-
haviors. Specifically, it learns two distinct spaces:
1) action space which captures the relations among
all observed and unobserved actions, and 2) entity
space which captures high-level similarities among
users and among items. Each action vector in the
action space is computed using a non-linear func-
tion and its corresponding entity vectors in the en-
tity space. In addition, METAS adopts an efficient
triplet mining algorithm to effectively speed up the
convergence of metric learning. Experimental re-
sults show that METAS outperforms the state-of-
the-art methods in predicting users’ heterogeneous
actions, and its entity space represents the user-
user and item-item similarities more clearly than
the space trained by the other methods.

1 Introduction
In many web-based applications, it is challenging to under-
stand and predict users’ future behaviors because their ac-
tions are heterogeneous in nature. For example, e-commerce
users perform several types of actions on products (e.g., click,
add to cart, add to favorite, purchase), and DB users request
heterogeneous DB operations on records (e.g., query, insert,
delete, update) in a web database. Therefore, a successful be-
havior model should jointly consider the interplay among het-
erogeneous types of user actions rather than separately mod-
eling user behaviors within each action type.

As alluded to above, user behavior logs are generally col-
lected in implicit form in which only positive actions are ob-
served. That is, negative actions and unobserved positive ac-
tions are mixed together, so a key challenge is to identify them
based on collaborative filtering; this problem is referred to as
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one-class collaborative filtering (OCCF) [Pan et al., 2008].
The conventional approach to OCCF is based on score learn-
ing such as matrix factorization (MF) and tensor factorization
(TF), which aims to approximate the score of each matrix en-
try (or tensor entry) close to the observed one. The state-
of-the-art TF method for user behavior modeling [Yin et al.,
2017] is also based on this approach. However, score learn-
ing methods have an intrinsic limitation in that user-user and
item-item similarities are not captured correctly in their latent
spaces, because they only learn the scores of user-item inter-
actions that do not guarantee the similarities among users and
among items.

To overcome this limitation, several recent work focus on
a metric space where triangle inequality is satisfied, and they
try to learn the distance rather than the score. Specifically,
collaborative metric learning (CML) [Hsieh et al., 2017] is
the first work to apply metric learning to OCCF, in which
the Euclidean distance between a user and an item vector in
the metric space is considered inversely proportional to the
strength of the user’s preference on that item. CML can re-
flect user-user and item-item similarities as well as users’
preferences on items in the metric space, because placing a
user close to its interacted items means that the items are also
getting closer to themselves. For this reason, CML shows bet-
ter accuracy in predicting users’ future behaviors than other
score learning methods.

However, the existing CML approach is not suitable for
modeling heterogeneous user behaviors for the following two
reasons. First, it assumes that there exists only a single type
of users actions in data, which makes it impossible to jointly
consider the interplay among heterogeneous types of user ac-
tions. Second, its metric space learns the naive similarity
among users and among items rather than high-level simi-
larity; for example, two users who have completely differ-
ent behavior patterns might be placed close to each other in
the metric space because of a few items on which both users
commonly do an action.

In this paper, we propose METAS, a novel METric learn-
ing method for Action Space where heterogeneous user be-
haviors are jointly embedded. To successfully incorporate the
action type information into our metric space, we design a
learning framework that optimizes two distinct spaces at the
same time: 1) Action space where all possible actions are em-
bedded – it learns the relations between observed-unobserved
action pairs in order to model how likely each action is per-
formed, and 2) Entity space where all entities (i.e., users,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2830



items, and action types) are embedded – it learns high-level
similarities among the entities.

In the action space, observed actions sharing a similar be-
havior pattern gather together while pushing unobserved ac-
tions away until they are beyond the predefined margin. Each
action (in the action space) is obtained from a nonlinear em-
bedding function which takes a user, an item, and an action
type (in the entity space) as its input, to capture the interac-
tion among the three entities. This non-linear function tunes
the entity space to reflect the indirect and high-level similar-
ities among users and among items. To effectively train both
the spaces using sparse data, METAS adopts an hard triplet
mining algorithm which efficiently selects triplets helpful for
learning the spaces.

Our experiments demonstrate that METAS outperforms
all other baselines. METAS more accurately predicts the
top-N items on which users will perform actions of differ-
ent types than the state-of-the-art method does, and also the
entity space obtained by METAS turns out to reflect the sim-
ilarities among entities more clearly compared to other meth-
ods. Furthermore, the proposed hard triplet mining algorithm
significantly boosts the convergence.

2 Related Work
In this section, we briefly review two different approaches
to one-class collaborative filtering (OCCF) for user behavior
modeling: 1) score learning approach that learns the inter-
action among entities from a score function, and 2) metric
learning approach that learns it from a distance function.

2.1 Implicit Tensor Factorization
Tensor factorization (TF) is widely used to analyze latent re-
lationships among entities in multi-aspect data, which are nat-
urally represented as high-order tensors. For heterogeneous
user behavior modeling, it factorizes a third-order tensor of
users’ historical behaviors, composed of the three aspects:
users, items, and action types.

In early work, RTF [Rendle et al., 2009a] uses an op-
timization criterion to maximize the ranking AUC for TF,
and BPR-PITF [Rendle et al., 2009b; Rendle and Schmidt-
Thieme, 2010] incorporates the concept of Bayesian person-
alized ranking (BPR) into TF, which learns the pairwise rank-
ing so that an observed entry has larger score than an unob-
served entry. BPR-PITF also introduces a pairwise interac-
tion factorization (PIF) by formulating the score function for
each tensor entry of a user i, an item j, and an action type k
as

f(i, j, k) = ui · vj + vj · tk + tk · ui, (1)

and empirically shows that PIF outperforms the other fac-
torization schemes such as Tucker decomposition (TD) and
canonical decomposition (CD).

SPTF [Yin et al., 2017] is the state-of-the-art TF method
for OCCF. SPTF computes the score of each entry using PIF
as well, but it designs its loss function based on probabilis-
tic generative model rather than BPR framework. With the
help of its elaborate sampling strategy for stochastic gradient
descent (SGD), it achieves the best performance among all
existing score learning methods developed for heterogeneous
user behavior modeling.

2.2 Collaborative Metric Learning
Recently, [Hsieh et al., 2017] criticizes that existing score
learning methods for OCCF cannot correctly reflect user-user
and item-item similarities in their latent spaces, and proposes
collaborative metric learning (CML) which focuses on com-
puting the distance between a user-item pair rather than a
score. The goal of CML is to learn a metric space in which the
Euclidean distance between a user and an item is considered
inversely proportional to the strength of the user’s preference
on that item. In other words, the trained metric space satis-
fies that the distance between a user and its interacted item
is smaller than the distance between the user and its non-
interacted items. The loss function is described as follows:

L =
∑

(i,j)∈S

∑
(i,k)/∈S

[‖ui − vj‖22 − ‖ui − vk‖22 + α]+, (2)

where α is the margin size and S is the set of observed user-
item interactions. As the metric space satisfies the triangle
inequality, user-user and item-item similarities are captured
together with the similarity in terms of user-item interactions;
two users sharing many interacted items (or two items sharing
many interacted users) also get closer in the metric space. For
this reason, CML shows better accuracy in predicting users’
behaviors than other score learning methods.

However, CML focuses on the user historical data contain-
ing only a single type of user actions, so it learns the distance
between a user and an item regardless of interaction types.
Thus, it cannot jointly model the interplay among multiple
types of user actions. In addition, user-user and item-item
similarities captured from user-item interactions are naive,
which in turn makes the metric space hard to learn high-level
similarities among users and among items. For example, two
users who have completely different behavior patterns might
be placed close to each other in the space because of a few
items on which both users commonly do an action. This is
because CML directly uses the Euclidean distance to measure
the similarity of a user-item interaction pair. To overcome
these limitations of CML, we need to newly design a dis-
tance function considering both heterogeneous action types
and non-linear relations between entities at the same time.

3 METAS
In this section, we describe METAS which jointly learns het-
erogeneous types of user behaviors in a metric space. First,
we formally describe the problem of heterogeneous behav-
ior prediction. Then, we introduce a key concept of our pro-
posed metric spaces where both entities and actions are em-
bedded, and explain the details about it. Furthermore, we
design a hard triplet mining algorithm to efficiently search
triplets which produce non-zero gradients.

3.1 Problem Formulation
In this work, we focus on predicting users’ future behaviors
given implicit user historical data. Let U = {u1, u2, . . . , uI}
be the set of all users, V = {v1, v2, . . . , vJ} be the set of all
items, T = {t1, t2, . . . , tK} be the set of all action types in
a dataset, where I , J and K are the number of users, items
and action types, respectively. They are components of each
action and we call them entity. A single action is represented
by a triple of (user index, item index, action type index), and
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it could be observed or not yet observed. Note that the num-
ber of all possible actions is large (i.e., I × J × K) and ob-
served actions account for only a small part of them. The
entire dataset containing all observed actions is denoted by
X . Based on the heterogeneous user behavior dataset X , the
problem is defined as below.

Problem: (Heterogeneous Behavior Prediction) Given a
target user ui and an action type tk, we aim to predict the
top-N items on which ui will perform the action tk.

We use neither any explicit rating data nor any contextual
(or auxiliary) information about entities. For the rest of this
paper, in most cases, we use the term “action” to denote a
single possible instance and “behavior” to denote a particular
way of acting, but sometimes these two terms are used inter-
changeably when it is understandable from the context.

3.2 Metric Learning for Behavior Prediction
In order to incorporate heterogeneous types of user actions
into the model, we first define a multi-layer representation
space, which consists two hierarchical metric spaces (Fig-
ure 1). The key difference of our multi-layer space from other
existing spaces is the decoupling of the space capturing the
interactions among entities from the space capturing the sim-
ilarities among entities. This structure facilitates METAS to
learn more accurate spaces; each of them learns the interac-
tion or the similarity for its own purpose, and the relation
between the two spaces is also additionally trained.

Figure 1: Multi-layer representation space for behavior prediction

The first space is entity space (∈ RD1) where all enti-
ties are embedded and their similarities are represented as
the distances among entities. The vectors of user i, item j,
and action type k in this space are denoted by bold letters
(i.e., ui, vj , and tk, respectively). The second space is ac-
tion space (∈ RD2) which embeds all possible actions and
behavior models of all users. We use the notations ai,j,k to
denote the vector of a single action (i, j, k) and bi,k to de-
note the behavior model vector of user i for action type k.
Each behavior model bi,k can be interpreted as a represen-
tative vector of its all relevant actions {ai,j,k|j = 1, ..., J}.
In this sense, all observed actions gather together around its
corresponding behavior model, whereas all unobserved ac-
tions are pushed away from its behavior model. Finally, the
Euclidean distance between a target action ai,j,k and its be-
havior model bi,k in the space implies how likely user i do
an action k on item j; the closer the distance between them

is, the more likely the action will be performed. Figure 1
illustrates our representation space.

A key challenge here is how to obtain {ai,j,k} and {bi,k}
so that they reflect the interactions among the entities. We
note that introducing new variables for them requires a large
number of parameters (i.e., IJKD2 and IKD2, respec-
tively), which eventually results in poor scalability and over-
fitting problem. For this reason, METAS defines action vec-
tors and behavior model vectors as a non-linear transforma-
tion of the corresponding entity vectors.

We employ two non-linear mapping functions f and g to
embed all possible actions and behavior models of users into
the action space. To be specific, f(ui,vj , tk) computes the
vector for the action (i, j, k), and g(ui, tk) computes the rep-
resentative vector for the k-th type actions of user i. Both
functions take the vectors of user, item and action type em-
bedded in the entity space as their input, and generate the
vector of each action or user’s behavior model that considers
non-linear interactions among the entities.

Then, we can define a new distance function d that com-
putes the Euclidean distance between a target action and its
behavior model, i.e.,

d(i, j, k) = ‖bi,k − ai,j,k‖2
= ‖g(ui, tk)− f(ui,vj , tk)‖2.

(3)

To make this distance reflect how likely the action will be per-
formed, we learn our action space in a way that an observed
action gets closer to its behavior model than an unobserved
action does. Namely, we create a triplet that consists of an
anchor (a behavior model of user i and action type k), a pos-
itive (a relevant observed actions, i.e., (i, j, k) ∈ X ), and a
negative (a relevant unobserved actions, i.e., (i, j′, k) /∈ X ),
as illustrated in Figure 1. Our triplet loss function is formu-
lated as follows:

L =
∑

(i,j,k)∈X

∑
(i,j′,k)/∈X

[d(i, j, k)− d(i, j′, k) + α]+, (4)

where [z]+ = max(z, 0) is the standard hinge loss, and α
is the margin size. METAS uses l2 distance rather than l22
distance in each triplet loss, following [Wu et al., 2017] that
pointed out l2 triplet loss is more stable and less likely to build
a collapsed model compared to l22 triplet loss.

Multi-layer perceptron (MLP) with dropout is employed as
our non-linear mapping functions f and g due to its effective-
ness in learning non-linear interactions among input features
and the simple structure for training. There could be a vari-
ety of design choices for MLP networks depending on how to
model the interactions between the entities. In this work, we
construct the input of these functions as the concatenation of
the three vectors (i.e., [ui;vj ; tk]).

We also add a constraint which bounds all entities within a
unit sphere to prevent entities from spreading too widely. We
obtain the entities satisfying this constraint by normalizing
each entity vector if its l2-norm becomes larger than 1; i.e.,
u∗ ← u∗/max(1, ‖u∗‖2), v∗ ← v∗/max(1, ‖v∗‖2), and
t∗ ← t∗/max(1, ‖t∗‖2), as done in CML.

3.3 Hard Triplet Mining
As the model gets closer to the convergence, it becomes more
difficult to reduce the loss (Eq. (4)) because of the increasing
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Algorithm 1: Hard triplet mining algorithm
Input: User behavior dataset X , mini-batch size b,

candidate itemset size c, the number of generated
triplets per observed action at a time n

Output: Mini-batch of hard triplets B
1 B ← φ
2 while |B| < b do
3 ui, tk ← Sample a target user and action type
4 V + ← {vj |(i, j, k) ∈ X}
5 V − ← Sample c negative items from the set of all negative

items (= {vj |(i, j, k) /∈ X})
6 for vj ∈ V + do
7 D+[vj ]← ‖g(ui, tk)− f(ui,vj , tk)‖2
8 for vj ∈ V − do
9 D−[vj ]← ‖g(ui, tk)− f(ui,vj , tk)‖2

. D+, D− : Map from each item to the distance
10 V +

sort, D
+
sort ← Sort D+ in descending order of values

11 V −
sort, D

−
sort ← Sort D− in descending order of values
. Vsort, Dsort : Array of sorted keys and values

12 ptrlb ← 1

13 for j = 1, ..., |V +| do
14 while D+

sort[j] + α < D−
sort[ptrlb] and

ptrlb < |V −| do
15 ptrlb ← ptrlb + 1

16 V −
select ← Sample n items from V −

sort[ptrlb : |V −|]
17 for vj′ ∈ |V −

select| do
18 B ← B ∪ {((ui, V

+
sort[j], tk), (ui, vj′ , tk))}

number of observed-unobserved action pairs (i.e., (i, j, k) ∈
X , (i, j′, k) /∈ X ) that have already satisfied the following
margin condition,

d(i, j, k) + α ≤ d(i, j′, k). (5)

A naive triplet selection algorithm, which randomly samples
an observed-unobserved action pair, cannot generate hard
triplets that contribute to the training of the model parameters.
This eventually leads to slow convergence and the waste of
computing resources consumed for calculating the zero gra-
dients.

In order to effectively train the model while saving the
time and computing resources, we propose a hard triplet min-
ing algorithm that efficiently searches triplets producing non-
zero gradients. Checking whether a given triplet violates the
inequality in Eq. (5) requires pre-computed action vectors,
but it is infeasible to keep all possible action vectors (i.e.,
f(ui,vj , tk)) on the memory and compute all the distances
among them. To tackle this challenge, our algorithm builds a
candidate set of unobserved actions given a user and an ac-
tion type, and some of them are selected and included in each
triplet.

Figure 2 illustrates the toy example of our algorithm. First,
given a user and an action type, it constructs 1) the set of
observed actions (V +) and 2) the set of unobserved actions
(V −) by sampling a small part of negative items on which
the user has not perform the action. After sorting the two sets
(V +

sort, V
−
sort) in decreasing order of their distances, it starts

to mine triplets from the observed action with the largest dis-
tance. As the unobserved actions are sorted in decreasing

Figure 2: Efficient identification of unobserved actions violating the
negative margin inequality; + and − represent observed and unob-
served action, respectively.

order, we can easily identify the range of unobserved ac-
tions that make the triplet “hard” (V −sort[ptrlb : |V −|]) by
finding the farthest unobserved action violating the inequal-
ity (V −sort[ptrlb]). This can be efficiently done by moving the
idx-lower-bound pointer (ptrlb) from begin to end just once
per a target user and action type. Finally, we sample n un-
observed actions from the identified range, and add the con-
structed hard triplets to our mini-batch. The detailed algo-
rithm is presented in Algorithm 1.1

4 Experiments
In this section, we present experimental results supporting
that METAS outperforms other baselines in various aspects.

4.1 Datasets
For our experiments, we use two large-scale and real-world
datasets: Tmall and Taobao. Tmall is the behavior dataset
collected by Tmall of Alibaba, one of the biggest e-commerce
platforms, and it is published by [Yin et al., 2017]. Taobao is
also users-commodities behavior data on Alibaba’s mobile-
commerce platforms, publicly available from Ali Mobile
Recommendation Algorithm Competition. Both of them con-
tain four types of user actions; click, add to favorite, add
to cart, and purchase. Details about the datasets are pre-
sented in Table 1. It is worth noting that the distribution
of observed actions with respect to behavior types is heav-
ily skewed. Specifically, t1 actions account for 83.06% of
the entire observed actions in case of the Tmall dataset, and
88.75% in case of the Taobao dataset.

Tmall Taobao
# users 9,896 10,000
# items 548,999 2,876,947

# act. types 4 4
# actions 2,141,805 (19,219) 5,248,048 (21,559)

# t1 actions 1,779,013 (9,796) 4,657,587 (9,957)
# t2 actions 126,383 (2,615) 222,132 (3,054)
# t3 actions 167,489 (4,503) 271,761 (5,334)
# t4 actions 68,920 (2,305) 96,568 (3,214)

Table 1: Statistics of two real-world datasets. (Parentheses: the
number of observed actions used for test and validation)

1To prevent any confusions between an array index and an entity
index, we use the entity itself ui, vj , tk instead of the entity index
i, j, k to represent each entity in the algorithm.
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4.2 Baselines
To evaluate the performance of METAS, we choose two
state-of-the-art methods from two categories: score learning
and metric learning.
• SPTF [Yin et al., 2017]: The state-of-the-art TF method

to model heterogeneous user behaviors. It shows the best
accuracy in predicting users’ future behaviors among all
score learning methods, including BPR-PITF [Rendle
and Schmidt-Thieme, 2010], BPTF [Xiong et al., 2010],
and RESCAL [Nickel et al., 2011].
• CML [Hsieh et al., 2017]: The state-of-the-art metric

learning method developed for OCCF. As CML was
originally developed to consider a single type of actions,
we train a separate model for each action type. That is,
each user or item is represented by multiple independent
vectors, each of which corresponds to each action type.

Since SPTF and CML surpassed other implicit feedback-
based baselines such as WRMF [Pan et al., 2008; Hu et al.,
2008], BPR [Rendle et al., 2009b] and WARP [Weston et al.,
2010], we do not further compare with them.

4.3 Evaluation Protocol and Metrics
We evaluate the prediction performance of METAS and
other baselines based on leave-one-out protocol widely used
in OCCF [He et al., 2017; Rendle et al., 2009b; He and
McAuley, 2016b; Xue et al., 2017; He and McAuley, 2016a;
He et al., 2016]. For each user, we leave out a single observed
action per action type for testing, and use the rest for training.
In our experiments, we leave out an additional observed ac-
tion for a validation set. Basically, we compute how close an
observed action put aside for testing is located to its behavior
model compared to other unobserved actions.

As it is time consuming to rank all the triples, for each
(user, action type) pair we sample 100 items on which the
user has not performed the actions (i.e., {(i, j′, k)|(i, j′, k) /∈
X}), and compute the distance function (Eq. (3)) for the test
triple and all the sampled triples [He et al., 2017; Xue et al.,
2017; Xue et al., 2017]. After forming a ranked list of the
distances, we compute several ranking metrics: 1) hit ratio
H@N simply measures whether the target action is present
in the top-N list, and 2) normalized discounted cumulative
gain (NDCG) N@N assigns higher scores to hits at upper
ranks in the top-N list.

4.4 Experimental Setting
We implement METAS and CML using Tensorflow [Abadi
et al., 2016] to run on GPU, and utilize the JAVA source
code of SPTF released by [Yin et al., 2017]. To train the
models, we use the Adam optimizer [Kingma and Ba, 2014]
supported by Tensorflow. The MLP networks of METAS
are equipped with a single layer, 50% dropout probability,
and ReLU activation. For each dataset, we tune the hyper-
parameters by using a grid search and use the optimal values
that show the best H@10 on the validation set. We set the
margin size α = 2 and the mini-batch size (i.e., the number
of triplets in a mini-batch) b = 200.2 We set D1 = D2 = D
to reduce the model complexity, and investigate the perfor-
mance changes with respect to the dimension size D with a

2We empirically found that the performances are hardly affected
by these hyper-parameters.

Figure 3: Users (Top) and items (Bottom) in the representation
spaces from SPTF (Left), CML (Center), and METAS (Right).

range of {50, 100, 150, 200, 250}. We only report the results
of D = 250 for Tmall and D = 100 for Taobao3, as we
observe the same trend across the dimension sizes.

4.5 Experimental Results
Prediction Accuracy
We first compare the prediction accuracy of METAS and
other methods in terms of various ranking metrics (Table 2).
For both the datasets, METAS achieves the best performance
among all the baselines, and specifically, shows the improve-
ment in terms of H@10 up to 20% compared to the state-of-
the-art method (i.e., SPTF).

From the point of view of modeling heterogeneous user be-
haviors, CML shows poor performance in predicting users’
behaviors of the action types with very few observed actions
(i.e., t2, t3, and t4). Because CML learns distinct vectors
of users and items for each action type, a small number of
observed actions related to t2, t3, and t4 is insufficient for
training the entire users and items. On the other hand, SPTF
shows relatively good performance on those action types be-
cause it jointly learns multiple types of user actions; user and
item vectors are shared and jointly trained across the action
types, and the observed actions of t1 type are helpful to learn
and predict the other types of actions. However, we observe
that the performance of SPTF on action type t1 is worse than
that of CML, whereas SPTF considerably outperforms CML
on the rest of the action types. This implies that the observed
actions in the majority type (i.e., t1), are used to help improve
the performance on the minor types (i.e., t2, t3, and t4), at the
expense of the performance on the majority class itself.

Unlike SPTF, METAS successfully learns the interplay
among heterogeneous types of user actions without compro-
mising the performance on the action type t1. In terms of hit
ratio, METAS outperforms all the other methods on all types
of actions. In terms of NDCG, METAS shows slightly worse
performance than SPTF on the action types t2, t3, and t4, but
it is still the best and the most powerful method considering
all types of actions in total.

Metric Visualization
We visualize users and items by using t-SNE [Maaten and
Hinton, 2008] to investigate how well each representation
space reflects user-user and item-item similarities. We ran-
domly sample 2000 users and 2000 items, and use the same
sets for all methods.

3We used the smaller dimension size for Taobao than that for
Tmall, due to our limited GPU memory.
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Datasets Tmall Taobao
Method Metric Total Type1 Type2 Type3 Type4 Total Type1 Type2 Type3 Type4

SPTF

H@10 0.6692 0.3829 0.9728 0.9771 0.9397 0.6662 0.3806 0.8939 0.9280 0.8998
H@20 0.7219 0.4845 0.9740 0.9787 0.9432 0.7059 0.4543 0.9011 0.9411 0.9095
N@10 0.5997 0.2797 0.9289 0.9479 0.9057 0.5747 0.2939 0.7868 0.8305 0.8189
N@20 0.6129 0.3052 0.9292 0.9483 0.9066 0.5848 0.3124 0.7886 0.8339 0.8214

CML

H@10 0.2814 0.4910 0.0730 0.0762 0.0278 0.3099 0.5327 0.1473 0.1264 0.0790
H@20 0.3586 0.6176 0.1155 0.1053 0.0282 0.3598 0.6391 0.1483 0.1282 0.0793
N@10 0.1865 0.3200 0.0506 0.0578 0.0249 0.2172 0.3597 0.1189 0.1019 0.0608
N@20 0.2059 0.3518 0.0613 0.0650 0.0250 0.2298 0.3865 0.1191 0.1024 0.0609

METAS

H@10 0.7523 0.5253 0.9908 0.9905 0.9809 0.7987 0.6185 0.9434 0.9700 0.9356
H@20 0.8142 0.6417 0.9962 0.9944 0.9892 0.8695 0.7298 0.9905 0.9944 0.9798
N@10 0.6298 0.3619 0.8951 0.9264 0.8883 0.6031 0.4600 0.6939 0.7648 0.6918
N@20 0.6455 0.3912 0.8964 0.9274 0.8905 0.6211 0.4882 0.7062 0.7711 0.7033

Improv.

H@10 12.42% 6.99% 1.85% 1.37% 4.38% 19.90% 16.10% 5.53% 4.53% 3.98%
H@20 12.79% 3.90% 2.28% 1.60% 4.88% 23.18% 14.19% 9.92% 5.66% 7.73%
N@10 5.02% 13.09% -3.64% -2.27% -1.92% 4.94% 27.90% -11.81% -7.91% -15.52%
N@20 3.79% 11.20% -3.53% -2.20% -1.78% 6.22% 26.32% -10.45% -7.53% -14.38%

Table 2: Test performance of METAS and other methods. The best performing methods is boldfaced. (Improv. denotes the improvement of
METAS over the best baseline method.)

Figure 4: The convergence speed of METAS in terms of the number
of triplets (Top) and the elapsed time (Bottom)

Figure 3 shows that users and items in the space obtained
from CML and SPTF gather together around a certain cen-
tric point, which is analogous to Gaussian distribution. On
the other hand, in the entity space learned by METAS, users
and items are relatively scattered throughout the space while
forming multiple small colonies. We argue that these colonies
can be interpreted as fine-grained clusters that share similar
behavior pattern. More precisely, our entity space is indi-
rectly learned from the relationship among actions in the ac-
tion space, which captures the non-linear interactions among
users, items, and action types; thus two users (or items) need
to share not only common items (or users), but also the ac-
tion types in order to be similar to each other in the entity
space (high-level similarity). The above experiment demon-
strates that METAS successfully learned the high-level sim-
ilarity among users and among items by decoupling the two
representation spaces of different purposes as well as taking
into account heterogeneous types of user actions.

Convergence Speed
To investigate the effectiveness of our hard triplet mining al-
gorithm, we compare the convergence speed of METAS with

METASnaive that randomly selects triplets for training. In
Algorithm 1, we set the candidate itemset size c to the size
of mini-batch, and n = 3. We plot the convergence curves
of METAS and METASnaive in terms of 1) the number of
triplets and 2) the elapsed time.

In Figure 4, our hard triplet mining algorithm considerably
boosts the convergence of METAS by selecting only the hard
triplets producing non-zero gradients. On the contrary, most
triplets selected by METASnaive are useless triplets, which do
not contribute to the training of the model parameters, thus its
convergence is much slower. In terms of the elapsed time, the
improvement becomes slightly less significant, because min-
ing the hard triplets requires relatively higher overhead cost
compared with randomly selecting the triplets: obtaining the
action vectors by the functions f and g, computing their dis-
tances, and sorting them. Despite the above overhead costs,
the hard triplet mining eventually shortens the training time
and makes METAS achieve higher accuracy.

5 Conclusion
This paper proposes METAS, a novel metric learning method
to embed the heterogeneous types of user behaviors in the ac-
tion space. METAS trains the two distinct metric spaces and
the non-linear mapping functions from one to the another;
all entities are embedded in the entity space, and all possi-
ble actions are embedded in the action space via the mapping
function whose input consists of the combination of entities.
METAS also adopts a hard triplet mining algorithm to effi-
ciently select triplets producing non-zero gradients. Our eval-
uation results on two real-world datasets demonstrate that 1)
METAS is more accurate in predicting users’ future behav-
iors compared to other baselines, 2) the metric space obtained
by METAS reflects high-level similarities among users and
among items, and 3) our hard triplet mining algorithm signif-
icantly boosts the training process of METAS.
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