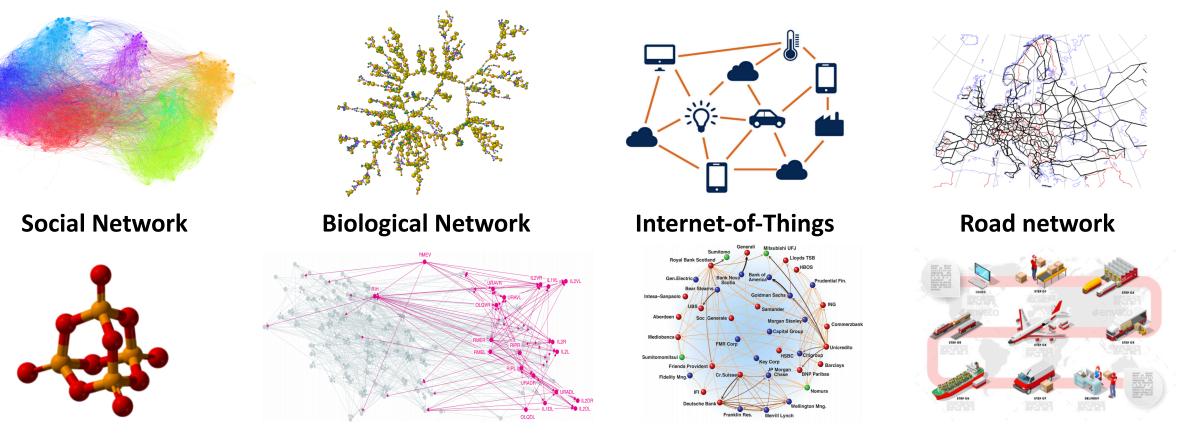
KDD 2020 Research Track Paper

Unsupervised Differentiable Multi-aspect Network Embedding

Chanyoung Park, Carl Yang, Qi Zhu, Donghyun Kim, Hwanjo Yu, Jiawei Han

Network is Everywhere

- A ubiquitous data structure to model the relationships between entities
- Many types of data can be flexibly formulated as networks



Chemical Network

Network of neurons

Financial network

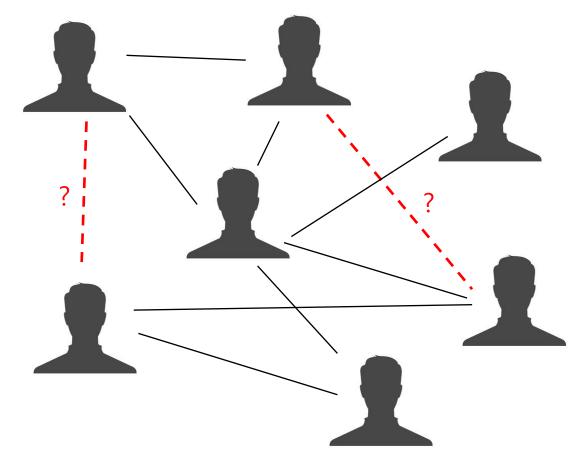
Logistic network

Classical Tasks in Networks

- Node classification
 - Predict the type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

How do we solve these network-related tasks?

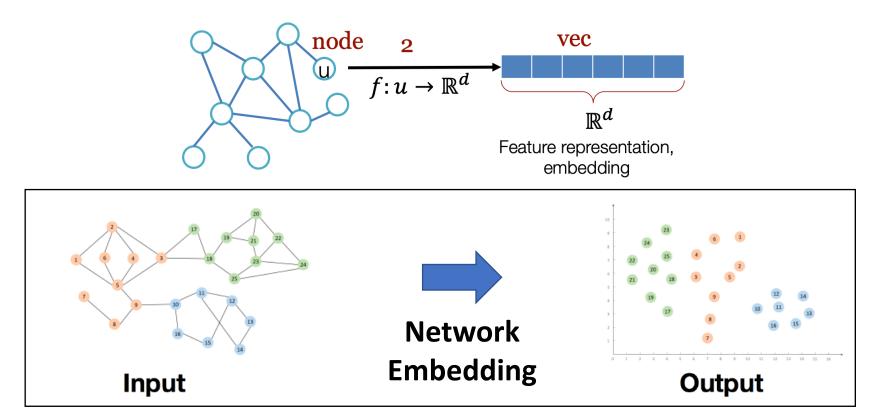
Example: Link Prediction (Friend Recommendation)



Network Embedding!

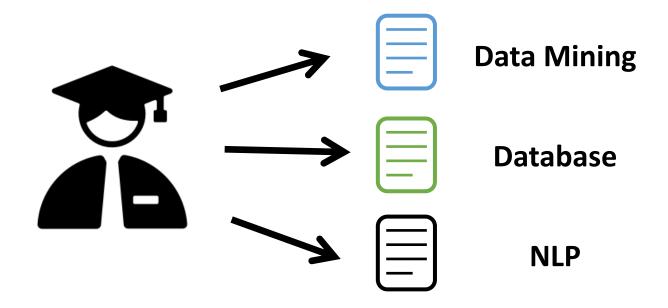
What is Network Embedding?

- Encode nodes so that similarity in the embedding space approximates similarity in the original network
- Similar nodes in a network have similar vector representations



Is a Single Vector Enough?

- Nodes (e.g., authors) in an academic publication network belong to multiple research communities
- Modeling each node with a single vector entails information loss



Multi-aspect of each node should be captured

Is Multi-aspect Enough?

- Authors can belong to multiple research communities
- These communities interact with one another

Interactions among aspects should be captured

Research Question

1. Is a Single Vector Enough?

• Solution: Multi-aspect Network Embedding

2. Is Multi-aspect Enough?

• Solution: Aspect Regularization Framework

Research Question

1. Is a Single Vector Enough?

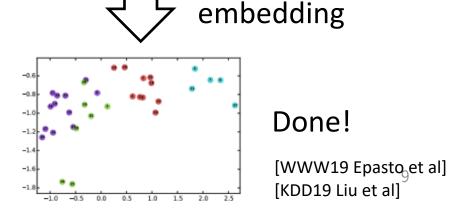
• Solution: Multi-aspect Network Embedding

2. Is Multi-aspect Enough?

• Solution: Aspect Regularization Framework

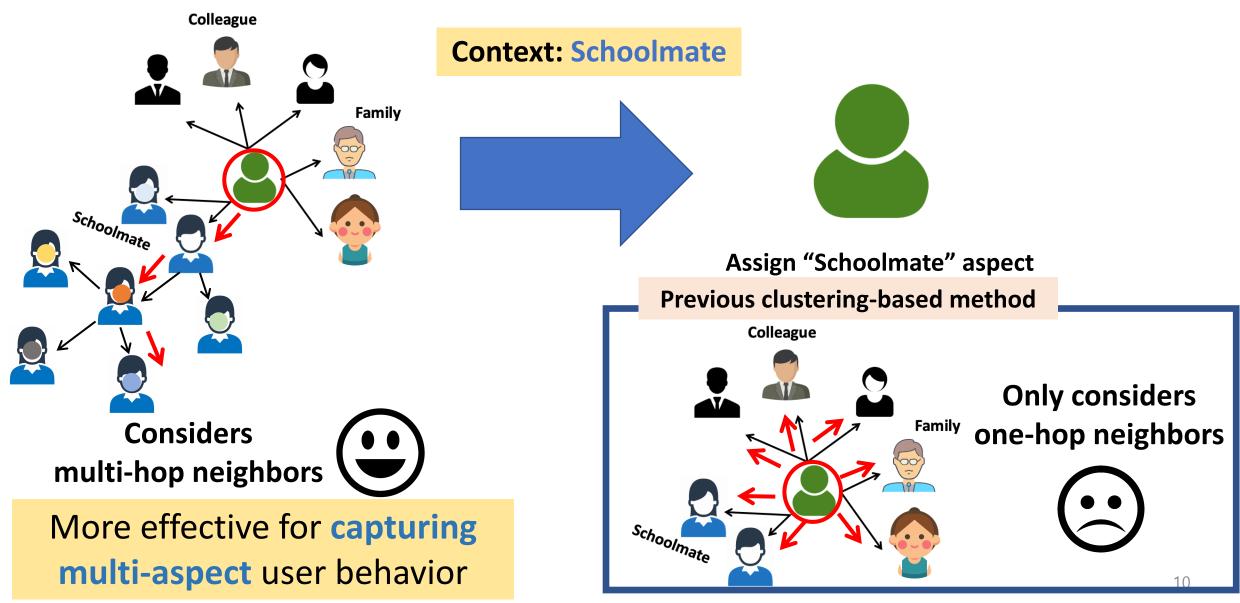
Previous work: Clustering-based aspect assignment

- 1. Each node always has the same fixed aspect regardless of its current context
- 2. Final network embedding quality depends on the performance of clustering
 - Training cannot be done end-to-end

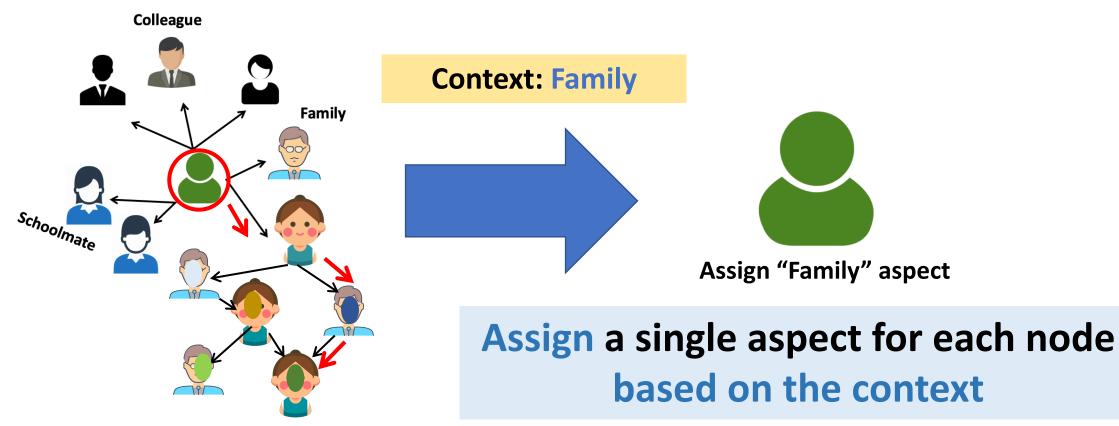


Start network

This work: Context-based aspect assignment



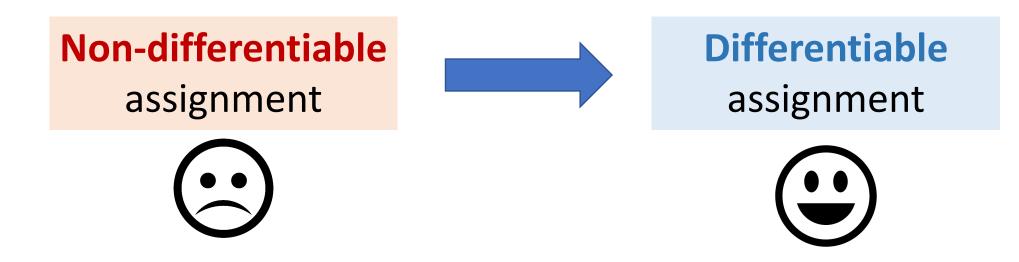
This work: Context-based aspect assignment



This assignment process is non-differentiable

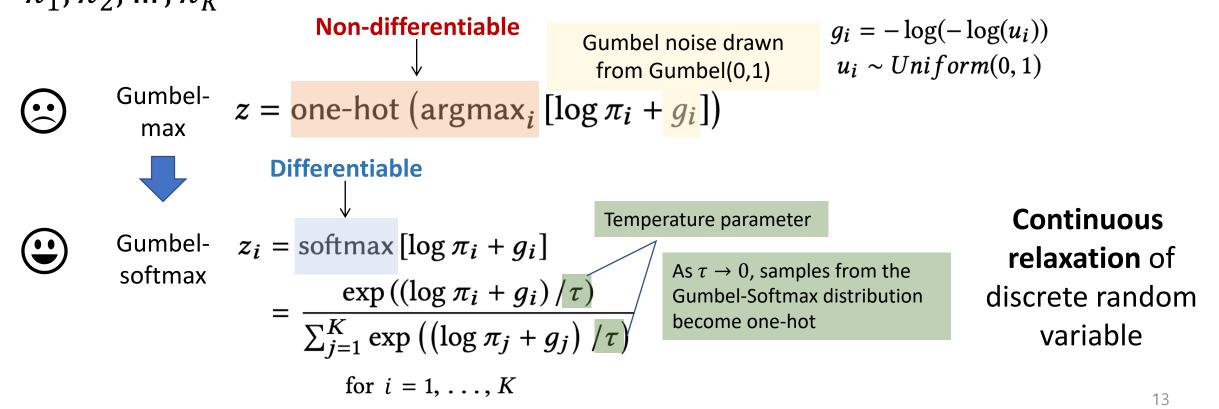
Gumbel-Softmax based Aspect Selection

 Adopt the Gumbel-softmax trick to dynamically sample aspects based on the context



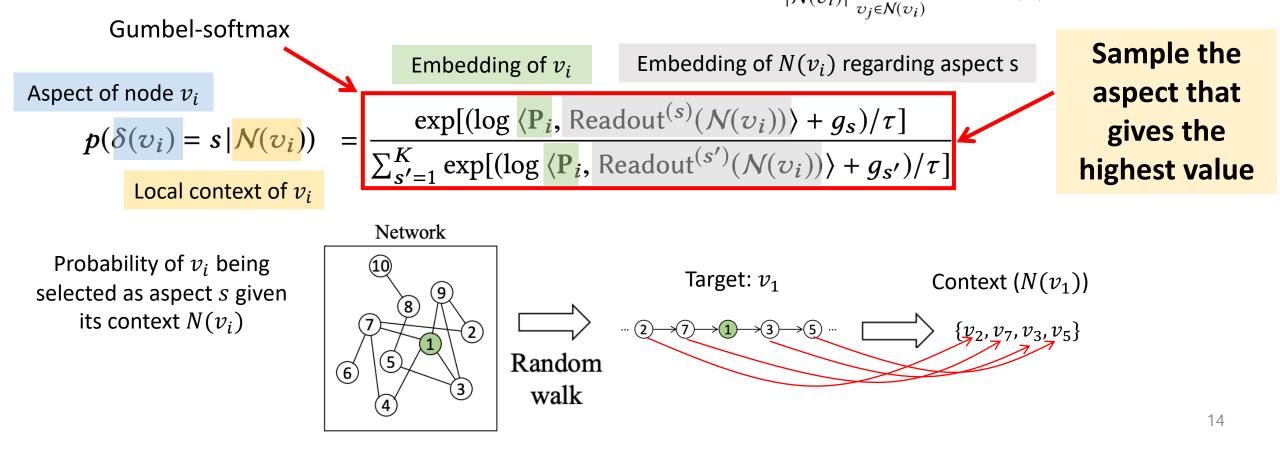
Gumbel-Softmax Trick (Jang et al, 2017)

- A simple way to draw a one-hot sample *z* from the **categorical distribution**
- Given: A *K*-dimensional categorical distribution with class probability $\pi_1, \pi_2, ..., \pi_K$



Gumbel-Softmax based Aspect Selection

• Adopt the **Gumbel-softmax trick** to **dynamically sample aspects based on the context** $\operatorname{Readout}^{(s)}(\mathcal{N}(v_i)) = \frac{1}{|\mathcal{N}(v_i)|} \sum_{v_i \in \mathcal{N}(v_i)} Q_j^{(s)} = \bar{Q}_{\mathcal{N}(v_i)}^{(s)}$



Single-aspect → Multi-aspect

Single-aspect
$$\mathcal{J}_{DW}^{(\mathbf{w})} = \sum_{v_i \in \mathbf{w}} \sum_{v_j \in \mathcal{N}(v_i)} \log p(v_j | v_i)$$

$$\underbrace{\sum_{v_j' \in \mathcal{V}} \exp(\langle \mathbf{P}_i, \mathbf{Q}_j \rangle)}_{\sum_{v_j' \in \mathcal{V}} \exp(\langle \mathbf{P}_i, \mathbf{Q}_{j'} \rangle)}$$

$$\underbrace{\exp[(\log \langle \mathbf{P}_i, \text{Readout}^{(s)}(\mathcal{N}(v_i)) \rangle + g_s) / \tau]}_{\sum_{s'=1}^{K} \exp[(\log \langle \mathbf{P}_i, \text{Readout}^{(s')}(\mathcal{N}(v_i)) \rangle + g_{s'}) / \tau]}$$

$$\underbrace{\operatorname{Multi-aspect}}_{\operatorname{asp2vec}} \mathcal{J}_{asp2vec}^{(\mathbf{w})} = \sum_{v_i \in \mathbf{w}} \sum_{v_j \in \mathcal{N}(v_i)} \sum_{s=1}^{K} p(\delta(v_i) = s | \mathcal{N}(v_i)) \log p(v_j | v_i, p(\delta(v_i) = s)) \\ Aspect selection \\ \text{probability}} \underbrace{\operatorname{exp}(\langle \mathbf{P}_i, \mathbf{Q}_j^{(s)} \rangle)}_{\sum_{v_j' \in \mathcal{V}} \exp(\langle \mathbf{P}_i, \mathbf{Q}_{j'}^{(s)} \rangle)}$$

$$\underbrace{\operatorname{Final objective}_{function}} \mathcal{L}_{asp2vec} = -\sum_{w \in \mathcal{W}} \mathcal{J}_{asp2vec}^{(\mathbf{w})}$$

Research Question

1. Is a Single Vector Enough?

Solution: Multi-aspect Network Embedding

2. Is Multi-aspect Enough?

• Solution: Aspect Regularization Framework

Aspect Regularization Framework

- Interactions among aspects should be captured
 - More related: Data Mining (DM) ↔ Database (DB)
 - Less related: Data Mining (DM) ↔ Computer Architecture (CA)
- Goal: Aspect embeddings should be
 - 1. Related to each other (Relatedness)
 - To capture some common information shared among aspects (e.g., $DM \leftrightarrow DB$)
 - 2. Diverse from each other (Diversity)
 - To independently capture the inherent properties of individual aspects (e.g., DM \leftrightarrow CA)

How to capture both relatedness and diversity among aspects?

Capturing Diversity

• Minimize similarity among aspect embeddings (= maximize diversity)

Cosine similarity

What about relatedness?

Capturing Relatedness

• Allow similarity among aspects to some extent

A-Sim
$$(\mathbf{Q}_{*}^{(i)}, \mathbf{Q}_{*}^{(j)}) = \sum_{h=1}^{|V|} f(\mathbf{Q}_{h}^{(i)}, \mathbf{Q}_{h}^{(j)})$$
 A-Sim $(\mathbf{Q}_{*}^{(i)}, \mathbf{Q}_{*}^{(j)}) = \sum_{h=1}^{|V|} w_{i,j}^{h} f(\mathbf{Q}_{h}^{(i)}, \mathbf{Q}_{h}^{(j)})$

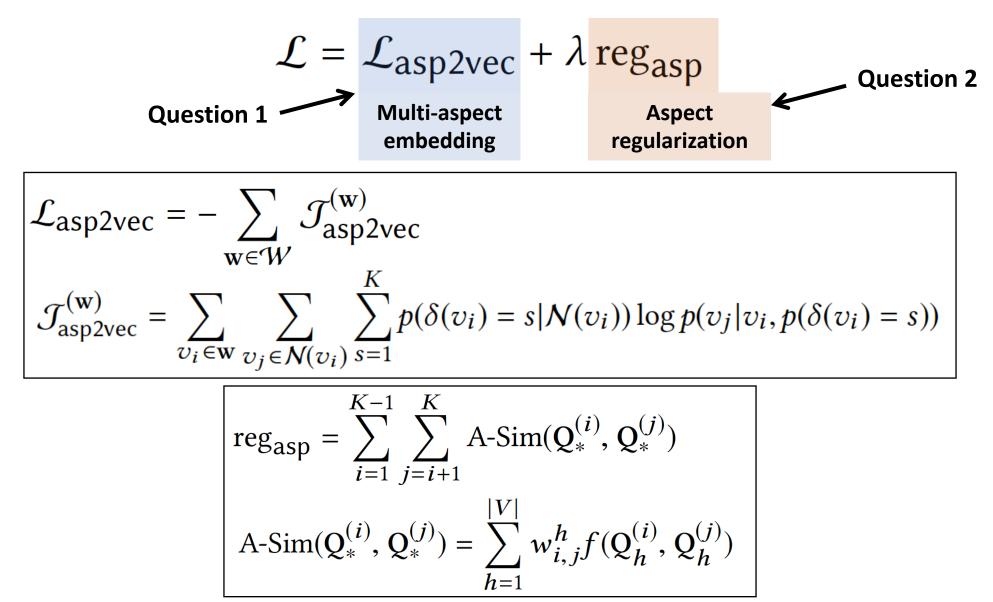
Maximize diversity

Maximize diversity + allow some similarity

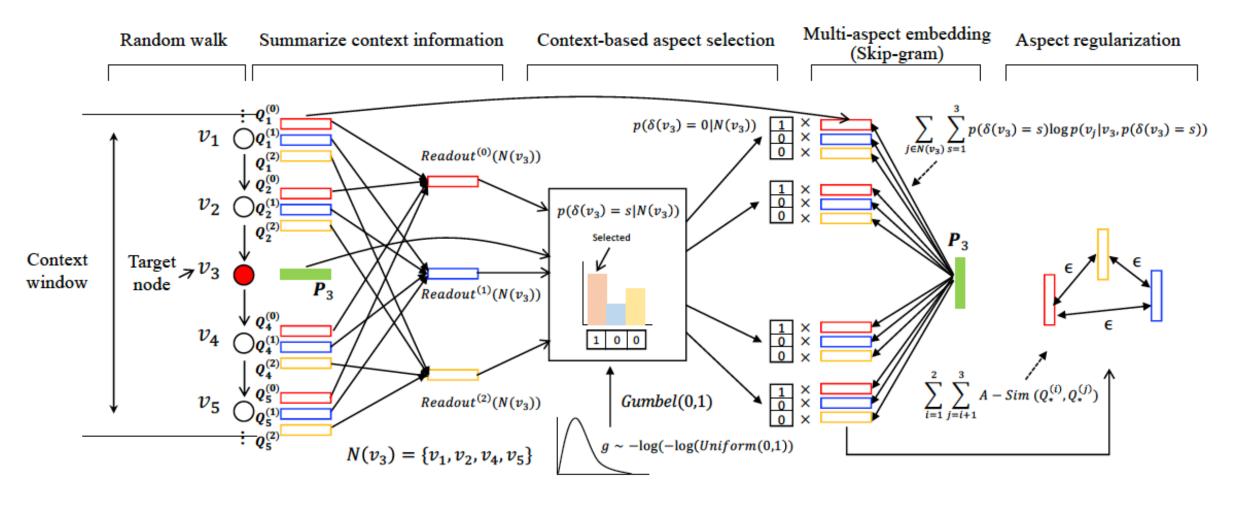
$$w_{i,j}^{h} = \begin{cases} 1, & \left| f(\mathbf{Q}_{h}^{(i)}, \mathbf{Q}_{h}^{(j)}) \right| \ge \epsilon \\ 0, & \text{otherwise} \end{cases} \quad \text{enforce loss if similarity is larger than } \epsilon \\ \text{enforce loss if similarity as much as } \epsilon \end{cases}$$

Binary mask

Final Objective Function



Overall Architecture: asp2vec



Experiments: Dataset

-			Dataset	Num. nodes	Num. edges	
-	Homogeneous Network	Social Network	Filmtrust (Dir.)	1,642	1,853	
			Wiki-vote (Dir.)	7,066	103,689	
			CiaoDVD (Dir.)	7,375	111,781	
			BlogCatalog	10,312	333,983	
			Epinions (Dir.)	49,290	487,181	
			Flickr	80,513	5,899,882	
			PPI	3,890	76,584	
		Wikipe	dia (Word co-occurrence)	4,777	184,812	
		Academic Network	Cora	2,708	5,429	
			ca-HepTh	9,877	25,998	
			ca-AstroPh	18,772	198,110	
			4area	27,199	66,832	

Table 2: Statistics of the datasets. (Dir.: directed graph.)

Result: Link Prediction

dim $(d \times K)$ 100 $(d = 20, K = 5)$				200 (d = 40, K = 5)					500 (d = 100, K = 5)						
	DW	DGI	PolyDW	Splitter	asp2vec	DW	DGI	PolyDW	Splitter	asp2vec	DW	DGI	PolyDW	Splitter	asp2vec
Filmtrust Wiki-vote CiaoDVD BlogCatalog Epinions Flickr	0.6850 0.6273 0.7136 0.8734 0.7188 0.9506	0.6809 0.9191 0.6684	0.5557 0.6528 0.7505 0.7038	0.6128 0.5190 0.5978 0.8441 0.6880 0.9528	0.7426 0.6478 0.7430 0.9503 0.7416 0.9584	0.7399 0.6277 0.7014 0.9220 0.7223 0.9580	0.7094 0.5741 0.6696 0.9083 0.6711 OOM	0.6944	0.6111 0.5085 0.5881 0.8199 0.6733 0.8582	0.7460 0.6464 0.7447 0.9548 0.7441 0.9571	0.7415 0.6260 0.7140 0.9331 0.7312 0.9570	0.7215 0.6540 0.6897 OOM OOM OOM	0.6643 0.5161 0.6058 0.6249 0.6720 0.8582	0.6097 0.5048 0.5819 0.7876 0.6581 0.9299	0.7501 0.6507 0.7450 0.9429 0.7459 0.9678
PPI Wikipedia	0.8236 0.7729	0.8087 0.8984	0.7286 0.6259	0.8372 0.6897	0.8887 0.9049	0.8237 0.8677	0.8341 0.8927	0.6995 0.5920	0.8346 0.6939	0.8947 0.9040	0.8214 0.8414	0.8593 0.9029	0.6693 0.5218	0.8336 0.7018	0.8991 0.9011
Cora ca-HepTh ca-AstroPh 4area	0.9181 0.9080 0.9784 0.9548	0.8223 0.8661 0.9144 0.9253	0.8806 0.9661	0.8357 0.8827 0.9731 0.9355	0.8814 0.8989 0.9734 0.9503	0.9110 0.9160 0.9803 0.9551	0.8300 0.8787 0.9690 0.9349	0.8416 0.8812 0.9734 0.9449	0.8361 0.9076 0.9791 0.9496	0.9056 0.9119 0.9821 0.9587	0.8814 0.9219 0.9775 0.9553	0.9475 0.7402 OOM OOM	0.8393 0.8831 0.9754 0.9463	0.8412 0.9058 0.9827 0.9550	0.9181 0.9185 0.9842 0.9627

Table 1: The overall performance for link prediction in terms of AUC-ROC (OOM: Out of memory).

- asp2vec generally performs well on all datasets
- Especially superior on social networks, PPI and Wikipedia networks
 - asp2vec performs better on networks that inherently exhibit multiple aspects

Result: Benefit of Gumbel-softmax based Aspect Selection

d = 20, K = 5	Softmax	Gumbel-Softmax	Improvement
Filmtrust	0.6421	0.7426	15.65%
Wiki-vote	0.6165	0.6478	5.08%
CiaoDVD	0.6162	0.7430	20.58%
BlogCatalog	0.7323	0.9503	29.77%
Epinions	0.6693	0.7416	10.80%
Flickr	0.8956	0.9584	7.01%
PPI	0.6919	0.8887	28.44%
Wikipedia	0.8269	0.9049	9.43%
Cora	0.8605	0.8814	2.43%
ca-HepTh	0.8890	0.8989	1.11%
ca-AstroPh	0.9116	0.9734	6.78%
4area	0.9286	0.9503	2.34%

Gumbel-Softmax is beneficial

Improvements: Social networks, PPI >> Academic networks

- Aspect modeling is more effective for networks with inherently diverse aspects
 - Aspect diversity: ex) User in social network vs. author in academic network

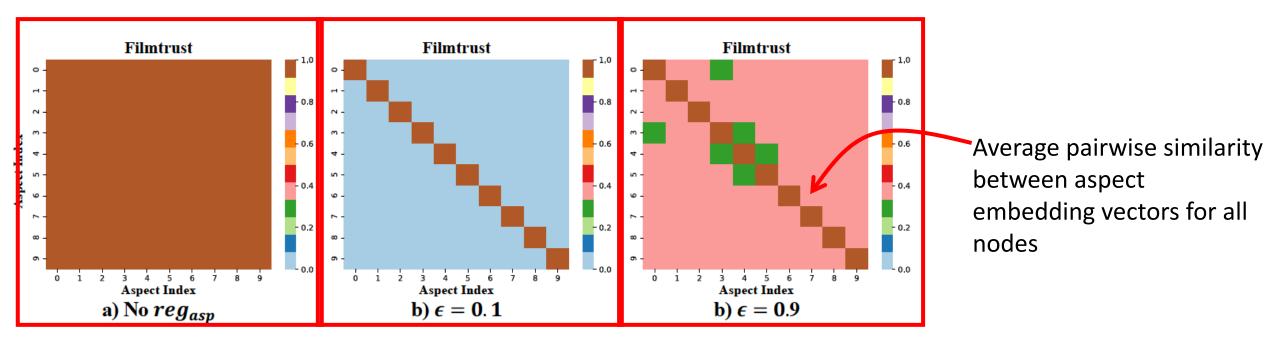
Result: Benefit of Aspect Regularization

Table 4: Link prediction performance (AUC-ROC) without reg_{asp}, and over various thresholds (ϵ).

dim = 100	No		best vs.				
(d = 20, K = 5)	reg _{asp}	0.9	0.7	0.5	0.3	0.1	No reg _{asp}
Filmtrust	0.660	0.743	0.742	0.740	0.738	0.735	12.58%
Wiki-vote	0.616	0.647	0.648	0.647	0.647	0.645	5.15%
CiaoDVD	0.617	0.743	0.742	0.742	0.738	0.735	20.37%
BlogCatalog	0.791	0.948	0.950	0.949	0.939	0.869	20.11%
Epinions	0.684	0.742	0.741	0.738	0.731	0.693	8.37%
Flickr	0.897	0.955	0.958	0.954	0.954	0.929	6.85%
PPI	0.729	0.880	0.885	0.889	0.881	0.819	21.97%
Wikipedia	0.841	0.896	0.904	0.905	0.880	0.850	7.60%
Cora	0.879	0.881	0.880	0.881	0.862	0.857	0.23%
ca-HepTh	0.879	0.899	0.896	0.898	0.893	0.864	2.30%
ca-AstroPh	0.921	0.973	0.973	0.971	0.967	0.939	5.56%
4area	0.919	0.950	0.949	0.946	0.940	0.915	3.44%
le la	•						

- 1) Performance drops
 - significantly when the aspect regularization framework is not incorporated
- 2) Aspect regularizationframework is less effectiveon the academic networks
 - Academic networks inherently have less diverse aspects

Result: How are the aspect embeddings learned?



- Aspect embeddings are trained to be highly similar to each other without reg_{asp}
 - Verifies the necessity of aspect regularization
- Small ϵ encourages the aspect embeddings to be diverse
- Large ϵ allows more flexibility in learning the aspect embeddings

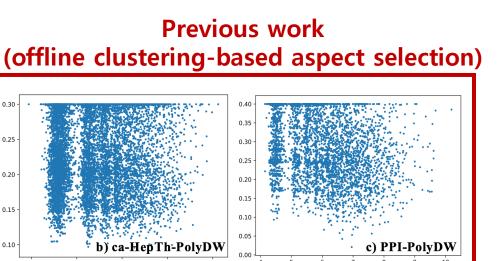
Result: How are aspects assigned?

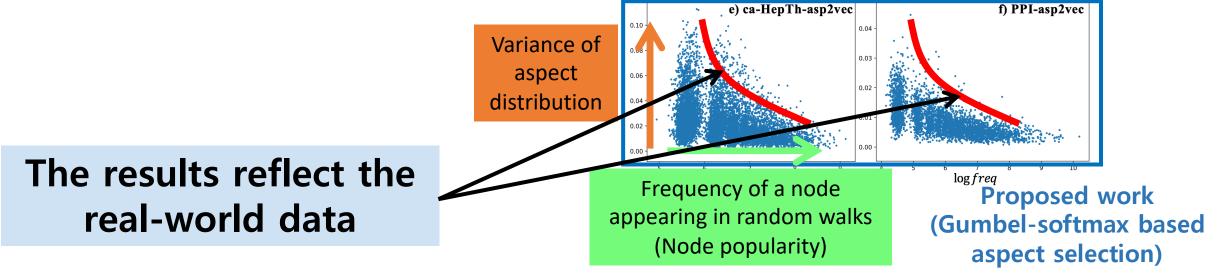
How does the real data look like?

Frequently appearing node \rightarrow Popular \rightarrow Likely to have diverse aspects

→ Aspects are relatively evenly distributed

→ Variance of aspect distribution is small





Conclusion

- Proposed a novel multi-aspect network embedding method
 - Dynamically determines the aspect based on the context information
- Aspect selection module (based on Gumbel-softmax trick)
 - Approximate the discrete sampling of the aspects
 - End-to-end training

Aspect regularization framework

- Encourage the learned aspect embeddings to be diverse, but to some extent related to each other
- Also easily extended to heterogeneous network (See paper)

Thank You!

For more information, please check our paper and code!

- Paper: https://arxiv.org/abs/2006.04239
- Code & Datasets: <u>https://github.com/pcy1302/asp2vec</u>
- Contact: cy.park424@gmail.com