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Network is Everywhere

* A ubiquitous data structure to model the relationships between entities

Social Network

Chemical Network Network of neurons Financial network Logistic network



Example: Link Prediction

Classical Tasks in Networks — c/icnd recommendation)
* Node classification l

* Predict the type of a given node

* Predict whether two nodes are linked ?
* Community detection
* Network similarity '

 How similar are two (sub)networks \ !
How do we solve these

* Link prediction /
* |ldentify densely linked clusters of nodes
network-related tasks?

Network Embedding!



What is Network Embedding?

* Encode nodes so that similarity in the embedding space approximates
similarity in the original network

* Similar nodes in a network have similar vector representations
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Is a Single Vector Enough?

* Nodes (e.g., authors) in an academic publication network belong to
multiple research communities

* Modeling each node with a single vector entails information loss

-
‘ ‘ Database
@ NLP

Multi-aspect of each node should be captured

Data Mining




Is Multi-aspect Enough?

e Authors can belong to multiple research communities
* These communities interact with one another

More Related Less related

Data Computer
D
atabase €—> Mining Architecture

Interactions among aspects should be captured



Research Question

1. Is a Single Vector Enough?
* Solution: Multi-aspect Network Embedding

2. |Is Multi-aspect Enough?
* Solution: Aspect Regularization Framework



Research Question

1. Is a Single Vector Enough?
* Solution: Multi-aspect Network Embedding



Previous work: Clustering-based aspect assignment

Colleague
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@ 1. Each node always has the same fixed aspect
regardless of its current context
@ 2. Final network embedding quality depends

on the performance of clustering
* Training cannot be done end-to-end

Start network
embedding
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This work: Context-based aspect assighnment

Colleague

Context: Schoolmate

Assign “Schoolmate” aspect

Previous clustering-based method

Colleague

Only considers

Considers - " one-hop neighbors
multi-hop neighbors -7 \

More effective for capturing
multi-aspect user behavior



This work: Context-based aspect assighnment

Colleague
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f‘\?w . .
@/‘%{}h Assign a single aspect for each node
- based on the context

This assighment process is non-differentiable
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Gumbel-Softmax based Aspect Selection

* Adopt the Gumbel-softmax trick to dynamically sample aspects
based on the context

Non-differentiable Differentiable
assignment ‘ assignment
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Gumbel-Softmax Trick (Jang et al, 2017)

* A simple way to draw a one-hot sample z from the categorical distribution

* Given: A K-dimensional categorical distribution with class probability
Ty, Ty, o, Tk

Non-dlffjrentlable Gumbel noise drawn  9i = _10.g(_ log(u;))
from Gumbel(0,1) uj ~ Uniform(0,1)
Gumbel- _ . _
@ e 2T one-hot (argmax; [log 7; + g;])

‘ Differelntiable

Temperature parameter Continuous
Gumbel- z; = softmax [log 7; + g;] :
@ softmax As T — 0, samples from the relaxation of

_ €Xp ((log T + gi) [T) Gumbel-Softmax distribution discrete random
Zf’il exp ((log ;i + gj) /Ty become one-hot variable

fori=1,...,K

(Jang et al, 2017) Categorical reparameterization with gumbel-softmax, ICLR 2017



Gumbel-Softmax based Aspect Selection

* Adopt the Gumbel-softmax trick to dynamically sample aspects

based on the context Readout (M) = e Y o=,
L vjeN(v;)
Gumbel-softmax
\ Embedding of v; Embedding of N(v;) regarding aspect s Sample the
Aspect of node v; aspect that
p(8(v;) = s|N(v;)) = expl(log (P, Readout'™) (N(v1))) + g5)/7] / gives the
> K _, expl(log (P;, Readout's)(N(v;))) + gs)/7] highest value

Local context of v;

Network

Probability of v; being
selected as aspect s given
its context N (v;)
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Single-aspect = Multi-aspect

eXp(<Pi9 Q]))
Single-aspect jév\;,) = Z Z loglp(vj|v,-)|(/ 2ojrey exp((Pi, Qj7))
vi€W v eN(v;) exp[(log (P;, Readout®)(N(v;))) + gs)/7]

> K_ exp[(log (P;, Readout®)(N(2;))) + gs)/ 7]

U

K
Multi-aspect ) = > 3" 3 |p((i) = sIN()lod p(sloi p6(vi) = )X
Vi EW vjeN(v,-) s=1
Aspect selection \4

probability exp((P;, QES) )

S o, cv exp((Pi, Q1))

Final objective  p _ E : (W)
asp2vec — J.
function P ol asp2vec
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Research Question

2. |Is Multi-aspect Enough?
* Solution: Aspect Regularization Framework



Aspect Regularization Framework

* Interactions among aspects should be captured
* More related: Data Mining (DM) €< Database (DB)
* Less related: Data Mining (DM) € Computer Architecture (CA)

e Goal: Aspect embeddings should be

1. Related to each other (Relatedness)
 To capture some common information shared among aspects (e.g., DM <> DB)

2. Diverse from each other (Diversity)
« Toindependently capture the inherent properties of individual aspects (e.g., DM <> CA)

How to capture both relatedness and diversity among aspects?



Capturing Diversity

* Minimize similarity among aspect embeddings (= maximize diversity)

K-1 K
_ . (i) (j) Q(l) c Rnxd
regasp = ;1 ;1 A-Sim(Q.,.”’, Q) x
i=1 j=i+1 ’\ Aspect embedding
Aspect similarity between matrix w.r.t. aspect i

aspectiandj
TR

4
: i ' i j (i) _ (i) AU
A-Sim(Q'", V) = > FQY, Q) fQ,, Q)= T -1 < f(QY, Q) <1
=1 n 11Qp

Cosine similarity

What about relatedness?



Capturing Relatedness

* Allow similarity among aspects to some extent
Binary mask

. _ V] . _ . . V] . .
A—Sim(Qil), Qg)) _ Zf(Q(l)’ Q%I)) ‘ A—Sim(Qil), Qg)) = Z(Q(l), Q%,’))
h=1 h=1

Maximize diversity Maximize diversity + allow some similarity

(D) oU) e
wh . = 1, ‘f(Q » Qp )‘ = €« Enforce loss if similarity is larger than €
b/ 0, otherwise * Allow similarity as much as €




Final Objective Function
L = Laspovec + Aregasp

Question 2
Question 1 / Multi-aspect Aspect /
embedding regularization
_ (w)
Lasvaec - Z *Tasp2vec
weW

K
Toec= 2 > > p(6wi) = sIN(wi)) log p(vj v pd(vi) = 5))

Vi EW ’(')J'EN(U,') s=1

K-1 K
refasp = ), ), ASim(@Q" Q")
i=1 j=i+

o o
asim(@”, Q") = 3 wh r@l?. o)
h=1




Overall Architecture: asp2vec

Random walk

Summarize context information

Context-based aspect selection

Multi-aspect embedding
(Skip-gram)

Aspect regularization

Context
window
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Experiments: Dataset

Table 2: Statistics of the datasets. (Dir.: directed graph.)

Dataset Num. nodes | Num. edges

Filmtrust (Dir.) 1,642 1,853

L Wiki-vote (Dir.) 7,066 103,689

3 § CiaoDVD (Dir.) 7,375 111,781

. 2 T BlogCatalog 10,312 333,983
g 4 Z Epinions (Dir.) 49,290 487,181

5 § Flickr 80,513 5,899,882
25 PPI 3,890 76,584
% Z Wikipedia (Word co-occurrence) 4,777 184,812
= o Cora 2,708 5,429
2 : ca-HepTh 9,877 25,998

T 5 ca-AstroPh 18,772 198,110

<~ farea 27,199 66,832




Result: Link Prediction

Table 1: The overall performance for link prediction in terms of AUC-ROC (OOM: Out of memory).

dim (d x K) || 100 (d = 20, K = 5) 200 (d = 40, K = 5) 500 (d = 100, K = 5)

|| DW  DGI PolyDW Splitter DW  DGI PolyDW Splitter | asp2vec] DW DGI  PolyDW Splitter | asp2vec

Filmtrust 0.6850 0.6973 0.6953  0.6128
Wiki-vote 0.6273 0.5860 0.5557  0.5190
CiaoDVD 0.7136  0.6809 0.6528  0.5978
BlogCatalog || 0.8734 0.9191 0.7505  0.8441
Epinions 0.7188 0.6684 0.7038  0.6880

0.7399 0.7094 0.6841 0.6111 | 0.7460 | 0.7415 0.7215 0.6643  0.6097 | 0.7501
0.6277 0.5741 0.5179  0.5085 | 0.6464 | 0.6260 0.6540 0.5161 0.5048 | 0.6507
0.7014 0.6696 0.6263  0.5881 | 0.7447 | 0.7140 0.6897 0.6058  0.5819 | 0.7450
0.9220 0.9083 0.6944  0.8199 | 0.9548 | 0.9331 OOM 0.6249 0.7876 | 0.9429
0.7223 0.6711 0.6884 0.6733 | 0.7441 | 0.7312 OOM 0.6720 0.6581 | 0.7459

Flickr 0.9506 0.9214 09146  0.9528 0.9580 OOM 08862 0.8582 | 0.9571 | 0.9570 OOM 0.8582  0.9299 | 0.9678

PPI 0.8236 0.8087 0.7286  0.8372 0.8237 0.8341 0.6995 0.8346 | 0.8947 | 0.8214 0.8593 0.6693 0.8336 [ 0.8991
Wikipedia 0.7729 0.8984 0.6259 0.6897 0.8677 0.8927 0.5920 0.6939 | 0.9040 | 0.8414 0.9029 0.5218 0.7018 | 0.9011

Cora 0.9181 0.8223 0.8504 0.8357 0.9110 0.8300 0.8416 0.8361 [09056 ] 0.8814 0.9475 0.8393 0.8412 [O9Isr |

0.9160 0.8787 0.8812  0.9076 0:9119 0.9219 0.7402 0.8831 0.9058 0:9185
0.9803 0.9690 0.9734 09791 | 0.9821 ]| 0.9775 OOM  0.9754  0.9827 | 0.9842
0.9551 0.9349 0.9449 0.9496 | 0.9587 | 0.9553 OOM 0.9463  0.9550 | 0.9627

Ca-HepTh 0.9080 0.8661 0.8806 0.8827
ca-AstroPh 0.9784 0.9144 0.9661 0.9731
4area 0.9548 0.9253 0.9441 0.9355

e asp2vec generally performs well on all datasets
e Especially superior on social networks, PPl and Wikipedia networks

- asp2vec performs better on networks that inherently exhibit multiple aspects
23



Result: Benefit of Gumbel-softmax based Aspect Selection

d =20,K =5 || Softmax | Gumbel-Softmax || Improvement
Filmtrust 0.6421 0.7426 15.65%
Wiki-vote 0.6165 0.6478 5.08%
CiaoDVD 0.6162 0.7430 20.58%

BlogCatalog 0.7323 0.9503 29.77%
Epinions 0.6693 0.7416 10.80%

Flickr 0.8956 0.9584 7.01%
PPI 0.6919 0.8887 28.44%
Wikipedia 0.8269 0.9049 9.43%
Cora 0.8605 0.8814
ca-HepTh 0.8890 0.8989
ca-AstroPh 0.9116 0.9734
4area 0.9286 0.9503

Gumbel-Softmax
is beneficial

Improvements: Social networks, PPl >> Academic networks

- Aspect modeling is more effective for networks with inherently diverse aspects
- Aspect diversity: ex) User in social network vs. author in academic network

24



Result: Benefit of Aspect Regularization

Table 4: Link prediction performance (AUC-ROC) without
regasp and over various thresholds (¢).

dim = 100 Threshold (¢€) best vs.
(d = 20, K = 5) 09 07 05 03 01 | Noreg, .
Filmtrust 0.743 0.742 0.740 0.738 0.735 12.58%
Wiki-vote 0.647 0.648 0.647 0.647 0.645 5.15%
CiaoDVD 0.743 0.742 0.742 0.738 0.735 20.37%
BlogCatalog 0.948 0.950 0.949 0.939 0.869 20.11%
Epinions 0.742 0.741 0.738 0.731 0.693 8.37%
Flickr 0.955 0.958 0.954 0.954 0.929 6.85%

PPI 0.880 0.885 0.889 0.881 0.819 21.97%
Wikipedia 0.896 0.904 0.905 0.8380 0.850 7.60%
Cora 0.881 0.880 0.881 0.862 0.857 0.23%
ca-HepTh 0.899 0.896 0.898 0.893 0.864 2.30%
ca-AstroPh 0.973 0.973 0.971 0.967 0.939 5.56%
4area 0.950 0.949 0.946 0.940 0.915 3.44%

1) Performance drops
significantly when the aspect
regularization framework is
not incorporated

2) Aspect regularization
framework is less effective

on the academic networks

 Academic networks
inherently have less diverse

aspects
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Result: How are the aspect embeddings learned?

Filmtrust

9 8 7 6 5 4 3 2 1 0

0 1 2 3

Aspect Index
a) Noreg,g,

4 5 6 7 8 9

Filmtrust

9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9
Aspect Index

b)e=0.1

Filmtrust

' \Average pairwise similarity
between aspect
embedding vectors for all
nodes

Aspect Index

b) e = 0.9

Aspect embeddings are trained to be highly similar to each other without reg,,

- Verifies the necessity of aspect regularization

Small € encourages the aspect embeddings to be diverse
Large € allows more flexibility in learning the aspect embeddings ”



Result: How are aspects assigned?

Previous work
(offline clustering-based aspect selection)

How does the real data look like?

Frequently appearing node - Popular
— Likely to have diverse aspects
- Aspects are relatively evenly distributed

-» Variance of aspect distribution is small

. log freq ;

The results reflect the Frequency of anode Proposed work

real-world data appearing in random walks (Gumbel-softmax based
(Node popularity) aspect selection)
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Conclusion

* Proposed a novel multi-aspect network embedding method
* Dynamically determines the aspect based on the context information

* Aspect selection module (based on Gumbel-softmax trick)
* Approximate the discrete sampling of the aspects
* End-to-end training

* Aspect regularization framework

* Encourage the learned aspect embeddings to be diverse, but to some
extent related to each other

* Also easily extended to heterogeneous network (See paper)



Thank You!

For more information, please check our paper and code!

* Paper: https://arxiv.org/abs/2006.04239
e Code & Datasets: https://github.com/pcy1302/asp2vec

 Contact: cy.park424@gmail.com



https://arxiv.org/abs/2006.04239
https://github.com/pcy1302/asp2vec

