

Nonlinearity Encoding for Extrapolation of Neural Networks

Gyoung S. Na¹ and Chanyoung Park²

¹Korea Research Institute of Chemical Technology (KRICT), Republic of Korea ²Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea ngs0@krict.re.kr, cy.park@kaist.ac.kr

Extrapolation

- Goal: Predict unseen data outside the training distribution
- Extrapolation is challenging because the input data usually follows an unknown distribution
- However, extrapolation is common in scientific applications in which discovering unobserved scientific knowledge is crucial

Formal Definition of Extrapolation in Machine Learning

- **Given**: Prediction model $f: \mathcal{X} \to \mathbb{R}$ trained on a training distribution \mathcal{D}
- **Goal**: Minimize the following extrapolation error *L_e*

- Machine learning achieved remarkable extrapolation performance in computer vision [1, 2]
- However, extrapolation in scientific applications is still far from satisfactory [3, 4]

Why is Extrapolation Difficult in Scientific Data?

- Nonlinear input-to-target relationship
 - Physical and chemical systems have severe nonlinear relationships with their properties.

Two similar structures have completely different physical properties, whereas two completely different structures have the same physical property

Image Dataset vs. Scientific Dataset

- T-SNE plots of MNIST and Material Project (MP) datasets
- Each point indicates an image or a material with target response (label) denoted by colors.
 - MNIST: class label

ΚΔΙΣΤ

MP dataset: band gap

(a) MNIST dataset

Similar images share similar labels

(b) MP dataset

Similar materials do not necessarily share similar labels

5

How Neural Networks Extrapolate (Xu et al, ICLR21)

 Theoretical findings in extrapolation: Neural networks with ReLU → simple linear regression in the extrapolation regime [7]

MLPs converge to linear functions outside the training data range

- **Proposed solution:** Remove nonlinearity from the data itself to linearize the problem
- Limitation: Requires domain knowledge to remove nonlinearity, and task-specific / data-specific

Related Work on Extrapolation

- Representation learning [5]
 - Pros: Universally applicable method
 - Cons: Constraints on data distributions
- Transfer learning [6]
 - Pros: Problem-specific methods, goal-directed learning
 - Cons: Source datasets, similar data distributions, re-training
- Graph reformulation [7]
 - Pros: Easy to implement, theoretical backgrounds
 - Cons: Manual reformulation, white-box systems

Most existing studies mainly focus on **supporting extrapolation** rather than learning extrapolation models

Can we learn extrapolation models?

Can we learn extrapolation models?

- : Image Dataset vs. Scientific Dataset
- Heatmap visualization of **within-** and **between-class distances** on benchmark image and materials datasets

Distance Consistency (DC)

- Consistency w.r.t. the distance between the inputs and their target responses
 - e.g., images > materials
- Extend our argument from classification to **regression**
 - Assume: Classification with infinite number of classes \approx regression

Linear regression on synthetic datasets

High distance consistency \rightarrow High accuracy (R^2 score) \rightarrow Input-to-target relationship is made simple

Problem Reformulation of Extrapolation

 We reformulate the extrapolation problem as a representation learning problem aiming to linearize the input-to-target relationships

- Our goal: Increase the distance consistency aiming at simplifying the input-to-target relationships
 - **Given:** Two pairs of data samples $(x_i, y_i), (x_j, y_j)$
 - Define: The distance between them

Dist. btw. targets

$$d(d(x_i, x_j) - d(y_i, y_j))$$

Dist. btw. inputs
Dist. btw. inputs

Nonlinearity Encoding based on Wasserstein Distance

• For a set of probability measures Π on $\Omega \times \Omega$, Wasserstein distance is defined by an optimization problem as:

$$W_p = \left(\inf_{\pi \in \Pi} \int_{\Omega \times \Omega} \|\mathbf{x} - \mathbf{y}\|_p \pi(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}\right)^{1/p}$$

Why Wasserstein distance?

Many scientific data has unknown and arbitrary shaped distributions

- However, there is a problem in applying Wasserstein distance in our task
 - Wasserstein distance is defined only for the **data distributions of the same dimensionality**.
- Our task: Regression
 - Input: Vector ($\in \mathbb{R}^d$)
 - Target: Scalar (∈ ℝ)

Dimension mismatch!

Nonlinearity Encoding based on Wasserstein Distance

 Instead, we define distance distribution to apply Wasserstein distance between two distributions of different dimensions

Definition) For a *n*-dimensional space $\mathcal{X} \subseteq \mathbb{R}^n$, distance distribution \mathcal{K} is defined as a probability distribution of pairwise distances d(x, x') for all $(x, x') \in \mathcal{X} \times \mathcal{X}$, where $d: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ is a distance metric.

$$W_{p} = \left(\inf_{\pi \in \Pi} \int_{\Omega \times \Omega} ||\mathbf{x} - \mathbf{y}||_{p} \pi(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}\right)^{1/p}$$

$$(p = 1)$$

$$(p = 1)$$

$$\mathbf{Distance consistency btw input and target!$$

$$W_{1}(\mathcal{K}_{x}, \mathcal{K}_{y}; \pi, \theta) = \inf_{\pi \in \Pi} \int_{\mathcal{M} \times \mathcal{M}} ||\mathbf{r} - \mathbf{u}|| \pi(r, u) dr du$$

$$(p = 1)$$

$$\mathbf{v} = d(\phi(\mathbf{x}; \theta), \phi(\mathbf{x}'; \theta)): \text{Dist. btw input data in embedding space}$$

$$\mathbf{u} = d(y, y'): \text{Dist. btw target data}$$

Our goal: Maximize the distance consistency between input and target
→ The distance between two inputs should be determined based on the distance between their targets

Problem Definition of Nonlinearity Encoding

• **Our method**: Automatic Nonlinearity Encoding (ANE)

Our problem can be defined as follows:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{j=1}^{N} \underset{\pi \in \Pi}{\inf} \int_{\mathcal{M} \times \mathcal{M}} \left\| \mathbf{r}_{ij} - \mathbf{u}_{ij} \right\|_{p} \pi(\mathbf{r}_{ij}, \mathbf{u}_{ij}) dr du$$

Joint optimization w.r.t. θ and π

- r_{ij} = d (φ(x_i; θ), φ(x_j; θ)): Dist. btw input data in embedding space
 u_{ij} = d(y_i, y_j): Dist. btw target data
- We can define a Lagrangian of the objective function as (refer Kantorovich-Rubinstein duality [6]):

$$L_{W} = \sum_{(i,j)\in\mathcal{N}} \sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left(\left\| r_{ij} - u_{kq} \right\| - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j)\in\mathcal{N}} \sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left\| r_{ij} - u_{kq} \right\| \pi(r_{ij}, u_{kq})$$

 $+\sum_{(i,j)\in\mathcal{N}}\left(p(r_{ij})-\sum_{(k,q)\in I_{ij}}\pi(r_{ij},u_{kq})\right)f(r_{ij})+\sum_{(i,j)\in\mathcal{N}}\left(p(u_{ij})-\sum_{(k,q)\in\mathcal{N}}\pi(r_{kq},u_{ij})\right)g(u_{ij})+\sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}}\pi(r_{kq},u_{ij})g(u_{ij}),$

where $\mathcal{N} = \{(i, j) \mid \text{for all } i, j \in \{1, 2, ..., N\}\}$, and $I_{ij} = \{(k, q) \mid u_{ij} = u_{kq} \text{ for } (k, q) \in \mathcal{N}\}$.

Pairs with the same target distance

Optimization: Model Parameter Optimization

• In the end, the representation learning problem to encode the nonlinearity is given by:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{j=1}^{N} \underset{\pi \in \Pi}{\inf} \int_{\mathcal{M} \times \mathcal{M}} \left\| \mathbf{r}_{ij} - \mathbf{u}_{ij} \right\|_{p} \pi(\mathbf{r}_{ij}, \mathbf{u}_{ij}) dr du$$

r_{ij} = d (φ(x_i; θ), φ(x_j; θ)): Dist. btw input data in embedding space *u_{ij}* = d(y_i, y_j): Dist. btw target data

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i=1}^{N} \sum_{j=1}^{N} \left\| \frac{r_{ij}}{r_{ij}} - \frac{u_{ij}}{u_{ij}} \right\|$$

Enforce distance consistency between data pairs!

Optimization: Model Parameter Optimization

Training of ANE-based prediction model

Input :Training dataset $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\};$ Embedding network $\phi(\mathbf{x}; \boldsymbol{\theta})$; Prediction model $f(\phi(\mathbf{x}; \boldsymbol{\theta}); \boldsymbol{\mu})$; Sampling method $\psi(\mathbf{x}; \boldsymbol{\mathcal{D}})$; Distance metric *d*

1 repeat

- for i = 1; i < N; i + + do2 $s = \psi(\mathbf{x}_i; \mathcal{D}) //$ List of indices of the samples. 3 for j = 1; j < |s|; j + 404 $r_{ij} = d(\phi(\mathbf{x}_i; \theta), \phi(\mathbf{x}_{s_j}; \theta))$ and $u_{ij} = d(\mathbf{y}_i, \mathbf{y}_{s_j})$ 5 $L_W + = ||r_{ij} - u_{ij}||_2$ 6 end 7
- end 8
- Optimize θ with respect to L_W . 10 **until** θ converged;

Prediction model

ANE

Experiments

- Matrix-shaped data
- Graph-structured data
- Time-series data

Extrapolation on Matrix-Shaped Data: n-Body Problem (1/3)

• Task: Given mass, position, and velocity of *n* particles, estimate future velocities of *n* particles

- Data preprocessing: 3-dimensional 3-body problem. $x_t \in \mathbb{R}^{3 \times 7}$ and $y_t \in \mathbb{R}^{3 \times 3}$ \leftarrow Matrix-shaped data
 - Simulated 10 datasets
 - **Train**: Observations in time [0, 80]
 - <u>Test</u>: Predict velocity in future time (80, 100]

Extrapolation on Matrix-Shaped Data: *n*-Body Problem (2/3)

- Metric: Distance correlation (Corr) between the simulated (ground-truth) and predicted velocities
 - To measure how accurately the models predict future trends of the velocities

Idx.	NBNet	GIN	MPNN	UMP	LRL-F	SLRL-F	ANE-F
1	0.32	0.54	0.35	0.25	0.43	0.53	0.18
2	0.49	0.54	0.53	0.36	0.52	0.49	0.45
3	0.57	0.54	0.53	0.46	0.52	0.59	0.29
4	0.25	0.68	0.26	0.26	0.09	0.07	0.03
5	0.66	0.93	0.71	0.69	0.85	0.65	0.49
6	0.11	0.22	0.17	0.16	0.12	0.12	0.02
7	0.75	0.94	0.63	0.67	0.61	0.44	0.40
8	0.44	0.85	0.26	0.29	0.27	0.38	0.15
9	0.39	0.26	0.10	0.70	0.18	0.40	0.03
10	0.64	0.72	0.55	0.54	0.53	0.37	0.27
mean	0.46	0.62	0.41	0.44	0.41	0.40	0.23
±std.	±0.19	±0.24	± 0.20	±0.19	±0.23	±0.18	±0.17

Direct prediction method GNN-based methods Metric learning-based method

ANE generates input representations that are the most effective to reducing the extrapolation errors

Extrapolation on Matrix-Shaped Data: *n*-Body Problem (3/3)

Extrapolation on Matrix-Shaped Data: *n*-Body Problem (3/3)

ΚΔΙΣΤ

Extrapolation on Graph-Structured Data: Materials Property Prediction

- **Task**: Predict four material properties (Formation energy, Band gap, Shear modulus, Bulk modulus)
 - Discovering novel materials is a fundamental task in various fields (e.g., semiconductor and renewable energy)

A material can be represented as an attributed graph $G = (\mathcal{V}, \mathcal{U}, \mathbf{X}, \mathbf{E})$.

Data preprocessing

- MPS dataset: Benchmark materials dataset containing 3,162 materials
- Train: Materials that contain only two types of elements (i.e., Binary materials)
- <u>Test</u>: Materials that contain **three/four types of elements** (i.e., Ternary and quaternary materials)

Extrapolation on Graph-Structured Data: Materials Property Prediction

• Metric: R^2 score

Mathad	Formation	Band	Shear	Bulk	
Method	Energy	Gap	Modulus	Modulus	
CCN	0.662	0.254	0.526	0.574	
GCN	(± 0.019)	(± 0.071)	(± 0.025)	(± 0.037)	
MONINI	0.072	NT/A	0.352	0.714	
IVIPININ	(± 0.052)	IN/A	(± 0.344)	(± 0.007)	
CCCNINI	NT / A	0.163	0.405	0.732	
CGCNN	IN/A	(± 0.424)	(± 0.441)	(± 0.011)	
	0.763	0.351	0.552	0.707	
UNIP	(± 0.042)	(± 0.069)	(± 0.003)	(± 0.022)	
	0.819	0.259	0.704	0.769	
LRL-MPININ	(± 0.024)	(± 0.034)	(±0.009)	(± 0.021)	
	0.841	0.396	0.693	0.767	
SLKL-IVIPININ	(± 0.018)	(±0.052)	(± 0.013)	(± 0.007)	
ANE MONINI	0.879	0.447	0.716	0.790	
AINE-MIPININ	(±0.017)	(±0.055)	(±0.015)	(±0.011)	

ANE-MPNN outperforms state-of-the-art GNNs and metric learning methods

Extrapolation on Time-Series Data: Geomagnetic Storm Forecasting

- Task: 1) Predict geomagnetic storm, 2) Detect geomagnetic storm
- Data preprocessing

KAIST

- Dataset: MagNet NASA dataset
- 1-year geomagnetic storm data is divided into 4 sequential periods (³/₄ used for training, ¹/₄ used for test)

ANE-GRU outperforms GRU, and ANE achieved further improvement over metric learning-based approaches

Conclusion

Proposed a data-agnostic embedding method for improving the extrapolation capabilities of ML

Data distribution in the original feature space Data distribution in the embedding space of ANE

- Maximized distance consistency between the inputs and their targets (Based on Wasserstein distance)
 - The distance between two inputs should be determined based on the distance between their targets
- Demonstrated the effectiveness in various scientific applications of various data formats

Thank you!

- Contact: <u>ngs0@krict.re.kr</u> / <u>cy.park@kaist.ac.kr</u>
- Source code: <u>https://github.com/ngs00/ane</u>
- Lab homepage: <u>https://dsail.kaist.ac.kr/</u>

Reference

[1] Richard et al. Oconet: Image extrapolation by object completion. CVPR, 2021.

[2] Yi et al. Wide-context semantic image extrapolation. In CVPR, 2019.

[3] Yuxin et al. Mlatticeabc: generic lattice constant prediction of crystal materials using machine learning. ACS omega, 2021.

[4] Haotong et al. Cryspnet: Crystal structure predictions via neural networks. Phys. Rev. Materials, 2020.

[5] Taylor et al. Learning representations that support extrapolation. ICML, 2020.

[6] Stephanie et al. Finding users who act alike: Transfer learning for expanding advertiser audiences. KDD, 2019.

[7] Xu et al. How neural networks extrapolate: from feedforward to graph neural networks. ICLR, 2021.

[8] Edwards et al. On the Kantorovich-Rubinstein Theorem. Expo. Math., 2011.

[9] NASA and NOAA satellites solar-wind dataset. https://www.kaggle.com/arashnic/soalr-wind.

Appendix

$$L_{W} = \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left(\left\| r_{ij} - u_{kq} \right\|_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in I_{ij}} \left\| r_{ij} - u_{kq} \right\|_{2} \pi(r_{ij}, u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}} \left(p(r_{ij}) - \sum_{(k,q)\in I_{ij}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) + \sum_{(k,q)\in\mathcal{N}} \left(p(u_{kq}) - \sum_{(i,j)\in\mathcal{N}} \pi(r_{ij}, u_{kq}) \right) g(u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \pi(r_{ij}, u_{kq}) g(u_{kq})$$
Part 3

$$L_{W} = \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left(\left\| r_{ij} - u_{kq} \right\|_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in I_{ij}} \left\| r_{ij} - u_{kq} \right\|_{2} \pi(r_{ij}, u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}} \left(p(r_{ij}) - \sum_{(k,q)\in I_{ij}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) + \sum_{(k,q)\in\mathcal{N}} \left(p(u_{kq}) - \sum_{(i,j)\in\mathcal{N}} \pi(r_{ij}, u_{kq}) \right) g(u_{kq})$$

$$+ \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \pi(r_{ij}, u_{kq}) g(u_{kq})$$

Best choice of the joint probability π ? Set $\pi(r_{ij}, u_{kq}) = 0$ for all $(i, j) \in \mathcal{N}$ and $(k, q) \in \mathcal{N} \setminus I_{ij}$

(i.e., If two pairs of data ((i,j) and (k,q)) and do not have the same target distance, then the joint probability is 0)

: $||r_{ij} - u_{kq}|| - f(r_{ij}) - g(u_{kq}) \ge 0$ by the constraint in Lagrangian multipliers (1-Lipschitz constraint)

$$L_{W} = \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left(\|r_{ij} - u_{kq}\|_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in I_{ij}} \|r_{ij} - u_{kq}\|_{2} \pi(r_{ij}, u_{kq}) + \sum_{(i,j)\in\mathcal{N}} \left(p(r_{ij}) - \sum_{(k,q)\in I_{ij}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) + \sum_{(k,q)\in\mathcal{N}} (p(u_{kq}) - \sum_{(i,j)\in\mathcal{N}} \pi(r_{ij}, u_{kq})) g(u_{kq}) + \sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \pi(r_{ij}, u_{kq}) g(u_{kq})$$

 $\pi(r_{ij}, u_{kq})$ is always zero under the **optimized embedding function** $\phi(\cdot; \theta^*)$.

$$L_W = \sum_{(i,j)\in\mathcal{N}} \sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \left(\left\| r_{ij} - u_{kq} \right\|_2 - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq})$$

$$-\sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in I_{ij}}\left\|r_{ij}-u_{kq}\right\|_{2}\pi(r_{ij},u_{kq})$$

 $+ \sum_{(i,j)\in\mathcal{N}} \left(p(r_{ij}) - \sum_{(k,q)\in I_{ij}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) + \sum_{(k,q)\in\mathcal{N}} \left(p(u_{kq}) - \sum_{(i,j)\in\mathcal{N}} \pi(r_{ij}, u_{kq}) \right) g(u_{kq})$ $+ \sum_{(i,j)\in\mathcal{N}} \sum_{(k,q)\in\mathcal{N}\setminus I_{ij}} \pi(r_{ij}, u_{kq}) g(u_{kq})$

Always zero by $p(r_{ij}) = \sum_{(k,q) \in I_{ij}} \pi(r_{ij}, u_{kq}),$ $p(u_{kq}) = \sum_{(i,j) \in I_{kq}} \pi(r_{ij}, u_{kq}),$ and $\pi(r_{ij}, u_{kq}) = 0$ for all $(i, j) \in \mathcal{N}$ and $(k, q) \in \mathcal{N} \setminus I_{ij}$. \leftarrow From Part 1

Part 3

Ο

$$L_{W} = \frac{\sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}}\left(\left\|r_{ij}-u_{kq}\right\|_{2}-f(r_{ij})-g(u_{kq})\right)\pi(r_{ij},u_{kq})}{+\sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in I_{ij}}\left\|r_{ij}-u_{kq}\right\|_{2}\pi(r_{ij},u_{kq})} \qquad Part 1$$

$$+\sum_{(i,j)\in\mathcal{N}}\left(p(r_{ij})-\sum_{(k,q)\in I_{ij}}\pi(r_{ij},u_{kq})\right)f(r_{ij}) +\sum_{(k,q)\in\mathcal{N}}\left(p(u_{kq})-\sum_{(i,j)\in\mathcal{N}}\pi(r_{ij},u_{kq})\right)g(u_{kq})$$

$$+\sum_{(i,j)\in\mathcal{N}}\sum_{(k,q)\in\mathcal{N}\setminus I_{ij}}\pi(r_{ij},u_{kq})g(u_{kq}) \qquad Part 3$$

Hence, one possible optimal joint probability π^* is given as:

$$\pi(r_{ij}, u_{kq}) = 0$$
 for all $(i, j) \in \mathcal{N}$ and $(k, q) \in \mathcal{N} \setminus I_{ij}$ but $\sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in I_{ij}} \pi(r_{ij}, u_{kq}) = 1$

Given data pairs that do not have the same target distance, setting their joint probability to zero is one possible solution (π should be a valid probability distribution)

Optimization: Model Parameter Optimization

• For the optimal joint probability π^* , the training problem of ANE is simplified as:

$$\theta^* = \arg\min_{\theta} \sum_{i=1}^{N} \sum_{J=1}^{N} |I_{ij}| \|r_{ij} - u_{ij}\| \pi_{ij}^*.$$

data pairs that share the same target distance with (i, j)

• The joint probability π_{ij} can be empirically estimated by the i.i.d. condition as:

$$\pi_{ij} = \frac{1}{\sum_{l=1}^{N} \sum_{m=1}^{N} |I_{lm}|}, \text{ and } |I_{ij}| \ll \sum_{l=1}^{N} \sum_{m=1}^{N} |I_{lm}|.$$

• Therefore, the representation learning problem to encode the nonlinearity is given by:

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i=1}^{N} \sum_{j=1}^{N} \left\| r_{ij} - u_{ij} \right\|_2 \qquad \left\| \mathbf{r}_{ij} = d\left(\phi(\mathbf{x}_i; \theta), \phi(\mathbf{x}_j; \theta)\right) \right\| \text{ Dist. btw input data in embedding space} \right\|_2$$

Enforce distance consistency between data pairs

Alternating optimization

Decomposition of Lagrangian: Full derivation

KRÏ

ΚΔΙΣΤ

$$\begin{split} L_{W} &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N}} ||r_{ij} - u_{kq}||_{2} \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \left(p(r_{ij}) - \sum_{(k,q) \in \mathcal{N}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) + \sum_{(i,j) \in \mathcal{N}} \left(p(u_{ij}) - \sum_{(k,q) \in \mathcal{N}} \pi(r_{kq}, u_{ij}) \right) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} ||r_{ij} - u_{kq}||_{2} \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in I_{ij}} ||r_{ij} - u_{kq}||_{2} \pi(r_{ij}, u_{kq}) \\ &+ \sum_{(i,j) \in \mathcal{N}} p(r_{ij}) f(r_{ij}) - \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \pi(r_{ij}, u_{kq}) f(r_{ij}) - \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &+ \sum_{(i,j) \in \mathcal{N}} p(u_{ij}) g(u_{ij}) - \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N} \setminus I_{kq}} \pi(r_{kq}, u_{ij}) g(u_{ij}) - \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in I_{ij}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &+ \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \pi(r_{ij}, u_{kq}) \right) f(r_{ij}) - \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &+ \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N} \setminus I_{ij}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N} \setminus I_{ij}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N}} \sum_{(i,j) \in \mathcal{N} \setminus I_{ij}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq}) \right) \pi(r_{ij}, u_{kq}) + \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \pi(r_{kq}, u_{ij}) g(u_{ij}) \\ &= \sum_{(i,j) \in \mathcal{N}} \sum_{(k,q) \in \mathcal{N} \setminus I_{ij}} \left(||r_{ij} - u_{kq}||_{2} - f(r_{ij}) - g(u_{kq$$

ANE for Discovering Solar Cell Materials

- Task: Predict band gaps of perovskites
 - c.f.) Perovskite has received significant attention as solar cell materials for renewable energy
 - Infer materials properties of crystal structures containing unseen elemental combinations
- Data preprocessing
 - Divided HOIP dataset by eliminating the materials that contain specific elements
 - **HOIP-HIGH**: HOIP (Germanium (Ge) and Fluorine (F))
 - HOIP-LOW: HOIP (Lead (Pb) and lodine (I))
 - Range of band gaps between training and test data is completely different

ANE for Discovering Solar Cell Materials

• Metric: R^2 score

N/A: negative R^2

ANE-MPNN roughly captured the relationships, while GCN fails to do so

Sampling Strategies and Extrapolation

- Time complexity of the training process of ANE: $\theta^* = \arg\min_{\rho} \sum_{i=1}^{N} \sum_{j=1}^{N} ||r_{ij} u_{ij}|| \to O(N^2)$
- Three sampling strategies to reduce the time complexity:
 - Random sampling: selecting a data point randomly at each iteration
 - *k*-NN sampling: selecting *k* nearest data points for an anchor data
 - Hardness sampling: selecting k data points based on the training errors (top-k largest errors)

Random sampling performs the best despite its simplicity (:: Random sampling = Density-based sampling)