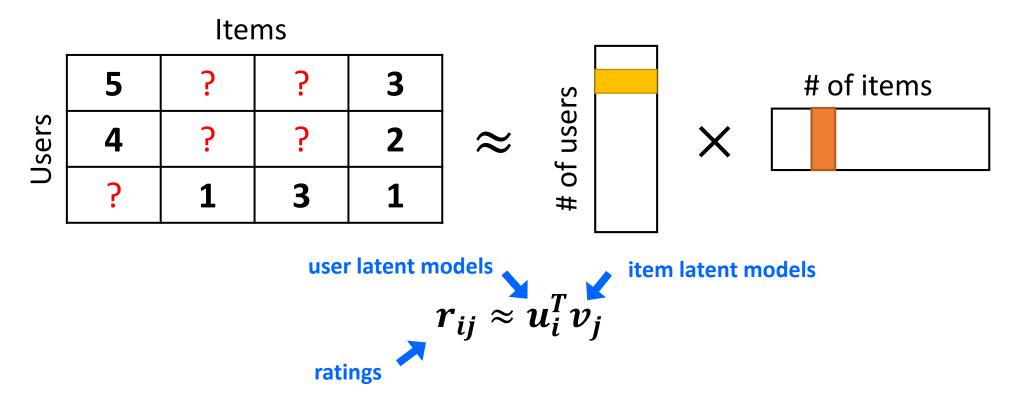


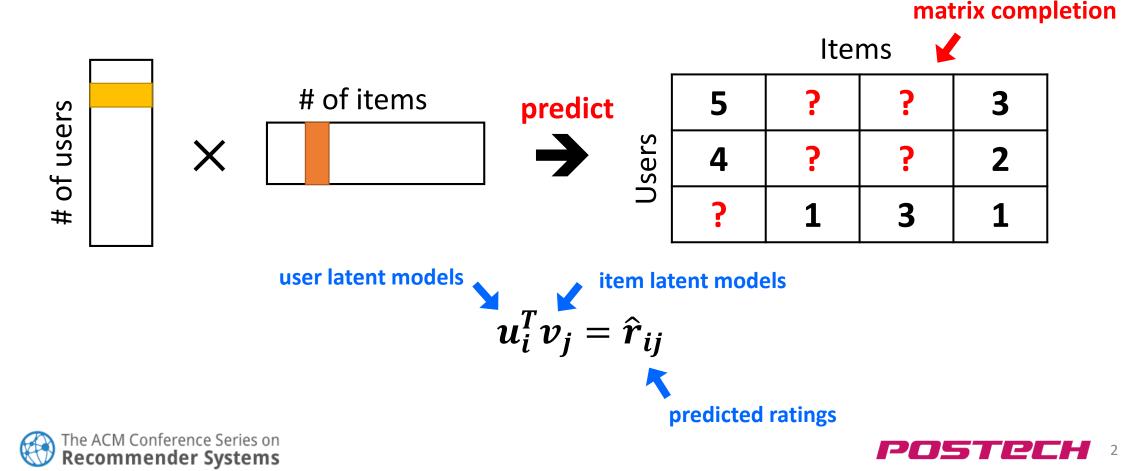
Convolutional Matrix Factorization for Document Context-Aware Recommendation

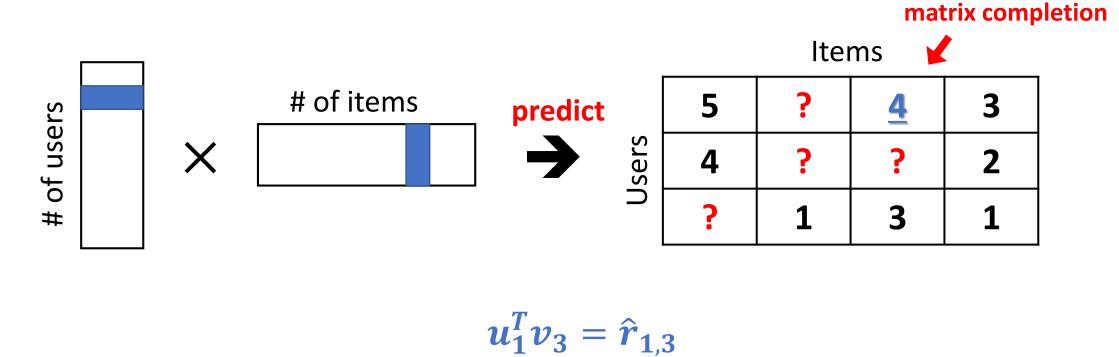
Donghyun Kim¹, Chanyoung Park¹, Jinoh Oh¹, Sungyoung Lee², Hwanjo Yu^{*1} ¹Datamining Lab @ POSTECH

²Ubiquitous Computing Lab @ Kyunghee University

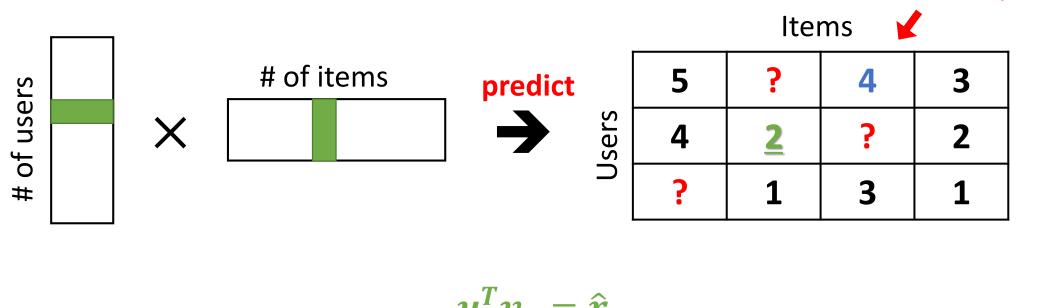
*corresponding author





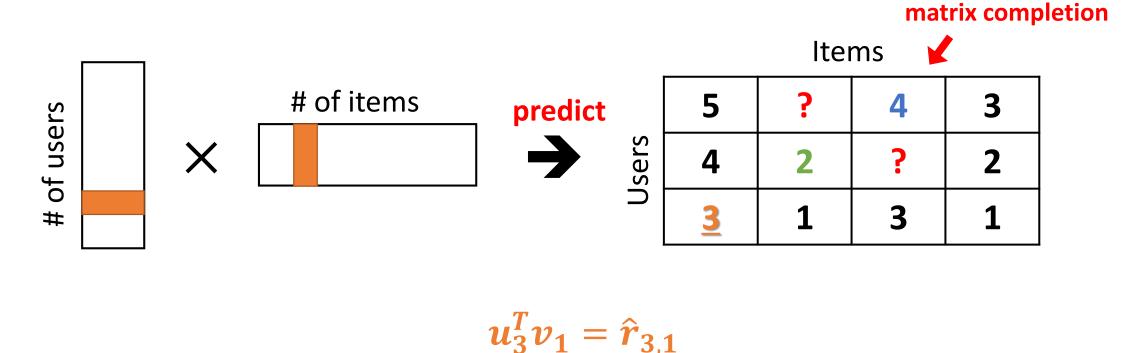


• A popular model-based collaborative filtering for recommendation

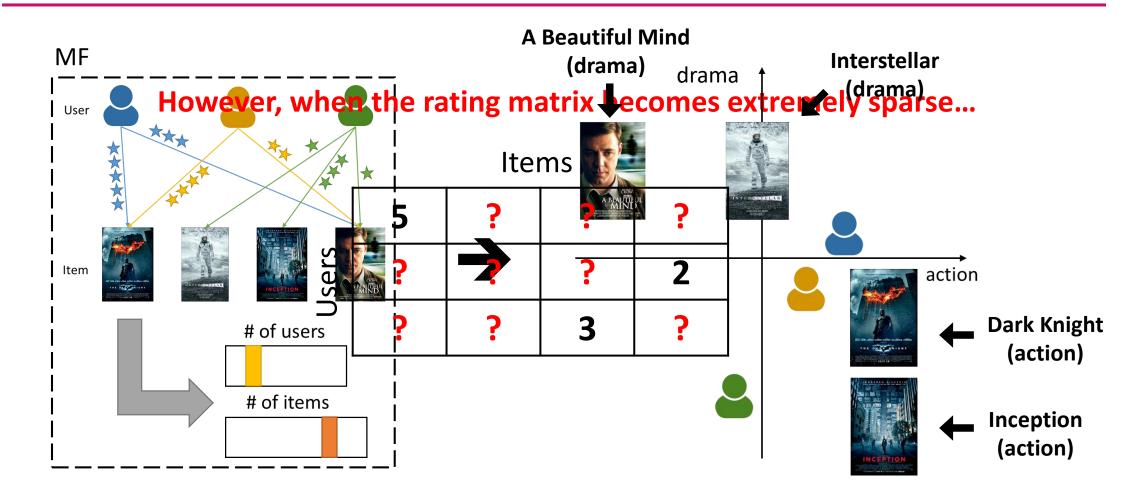


$$u_{2}^{\prime}v_{2}=\hat{r}_{2,2}$$

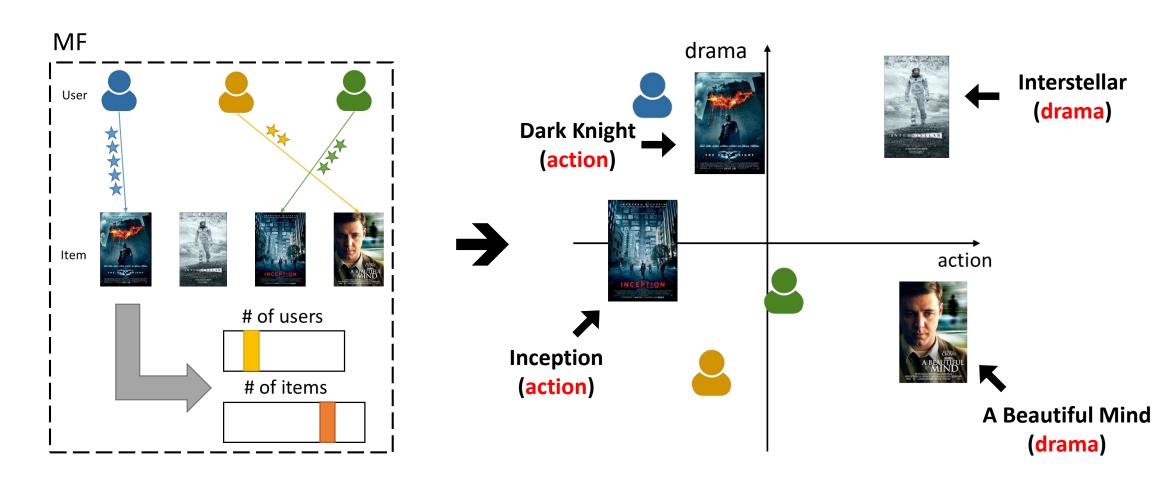
matrix completion



User and item latent models in 2D space!

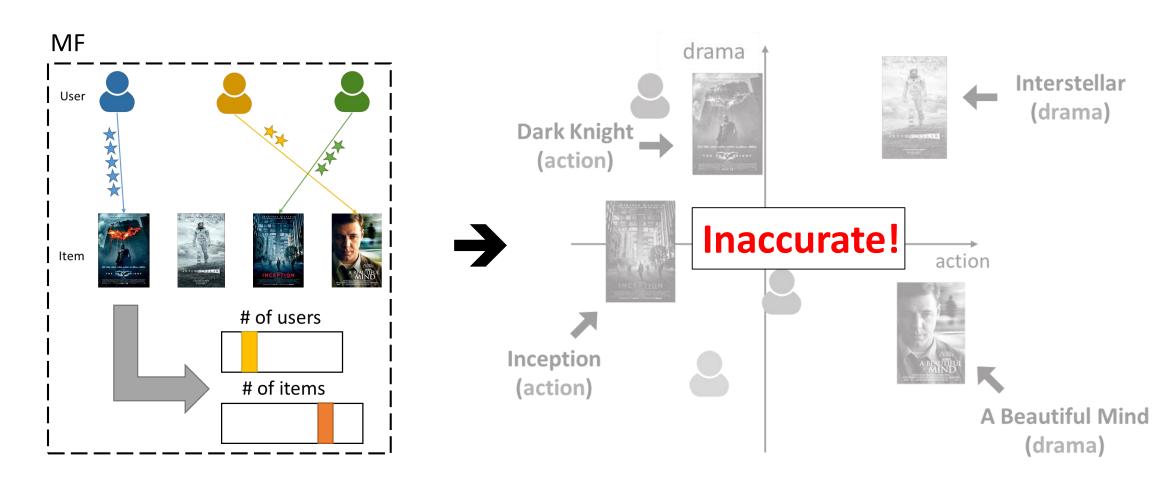


User and item latent models in 2D space!



POSTECH ³

User and item latent models in 2D space!



POSTPI

- 3

• To handle sparseness of a rating matrix, text information (review, synopsis, abstract, etc.) has been widely used in recent researches. [KDD`15, RecSys`14, RecSys`13, KDD`11]

The Dark Knight (2008) Plot Summary	a description document
Showing all 6 plot summaries	
Set within a year after the events of Batman Begins, Batman, Lieutenant James Gordon, and new district attorney Harvey Dent successfully begin to round up the criminals that plague Gotham City until a mysterious and sadistic criminal mastermind known only as the Joker appears in Gotham, creating a new wave of chaos. Batman's struggle against the Joker becomes deeply personal, forcing him to "confront everything he believes" and improve his technology to stop him. A love triangle develops between Bruce Wayne, Dent and Rachel Dawes. - Written by Leon Lombardi	

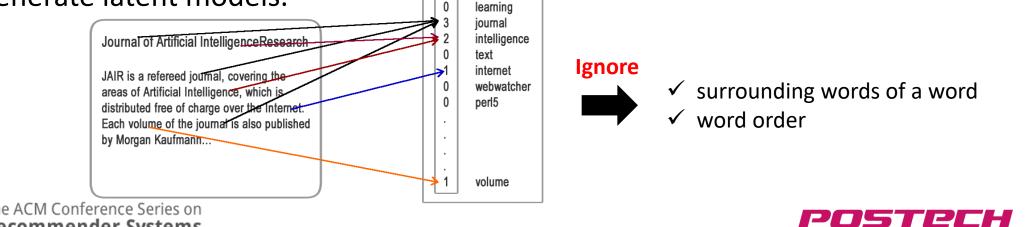
• Trial to understand description documents for recommendation

- Trial to understand description documents for recommendation
 - Collaborative topic modeling for scientific articles (CTR) [KDD`11]
 - Latent Dirichlet Allocation (LDA)

- Trial to understand description documents for recommendation
 - Collaborative topic modeling for scientific articles (CTR) [KDD`11]
 - Latent Dirichlet Allocation (LDA)
 - Collaborative deep learning for recommender system (CDL) [KDD`15]
 - Stack Denoising AutoEncoder (SDAE)

Drawback of common approaches

- Trial to understand description documents for recommendation
 - Collaborative topic modeling for scientific articles (CTR) [KDD`11]
 - Latent Dirichlet Allocation (LDA)
 - Collaborative deep learning for recommender system (CDL) [KDD`15]
 - Stack Denoising AutoEncoder (SDAE)
- However, LDA and SDAE analyze "bag of words models" of item descriptions to generate latent models.



"Contextual information" in documents

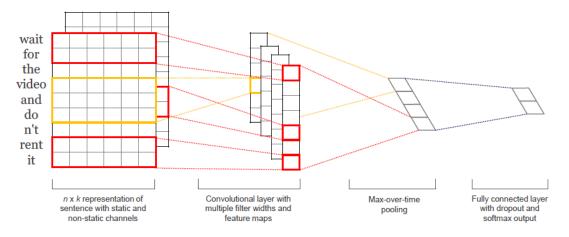
- Considering surrounding words and word order as "contextual information" improves the accuracy of word vectors in the word embedding.
 - Word2Vec [NIPS`13]
- What if recommender systems are able to capture *contextual information* in documents?
 - Generate more accurate item latent models through a deeper understanding of item descriptions.
- Thus, contextual information should be considered for better recommendation!

Our proposed model

- We develop a novel document context-aware recommendation model, Convolutional Matrix Factorization (ConvMF).
 - To consider contextual information
 - To effectively exploit both ratings and description documents
 - To jointly optimize the recommendation model in order to properly predict ratings to items of users

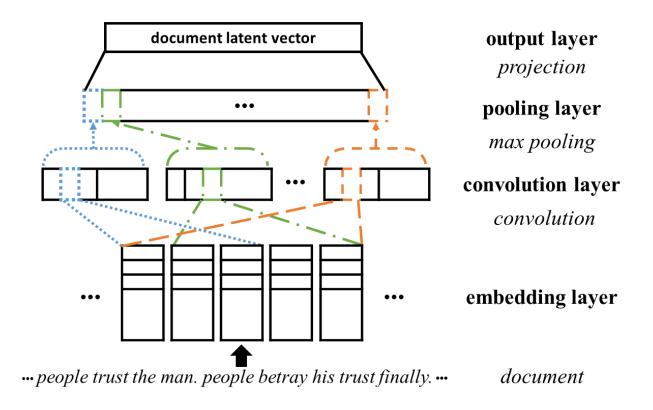
Inspired by Convolutional Neural Network (CNN)

- For the NLP and IR tasks, convolutional neural networks (CNNs) have been mainly developed to consider local contextual information in a document.
 - NLP: [JMLR`11, ACL`14, EMNLP`14], IR: [EMNLP`14, CIKM`14]
- An example of CNN architecture for sentiment classification. [EMNLP 2014]



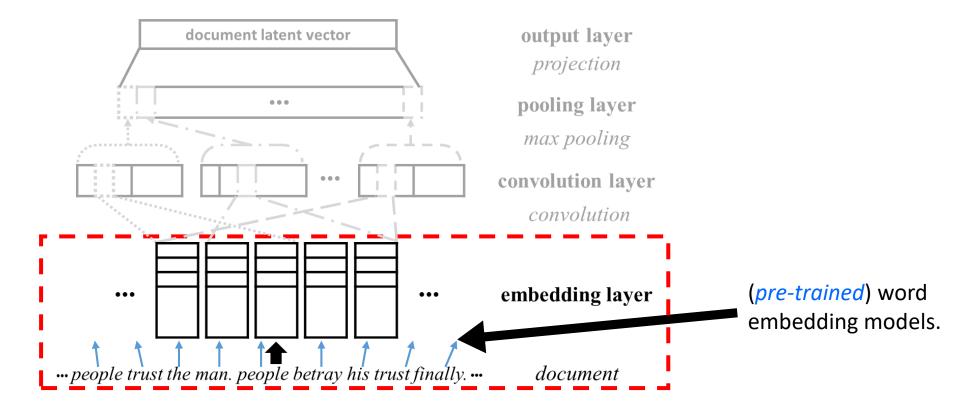
Overview of our CNN architecture

• Trial to generate more accurate item latent models



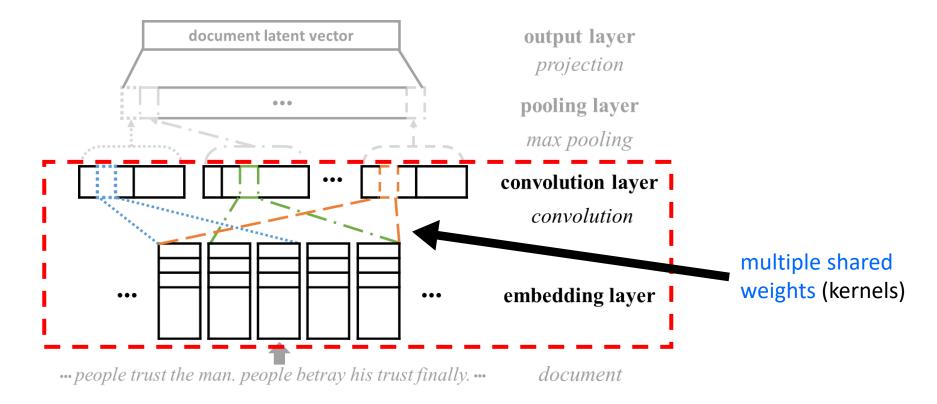
Embedding layer – word embedding

• Transform a raw description document into a numeric document matrix.



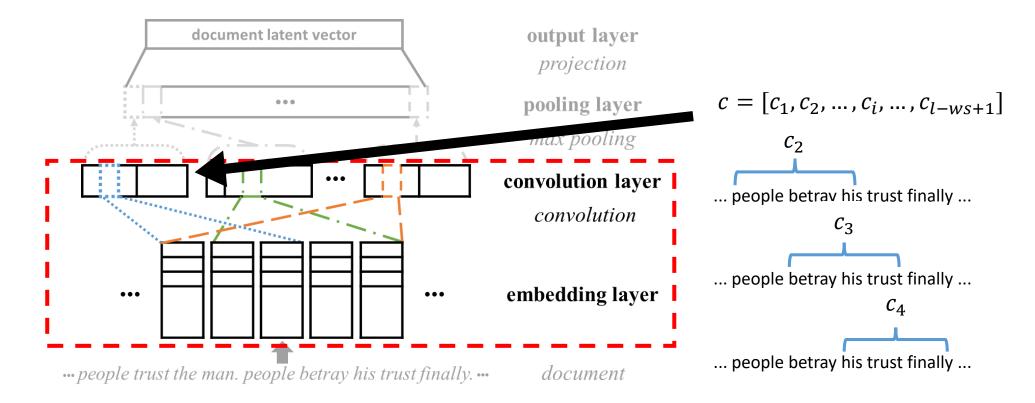
Convolution layer – *contextual information*

• Extract *contextual features* from a document matrix.



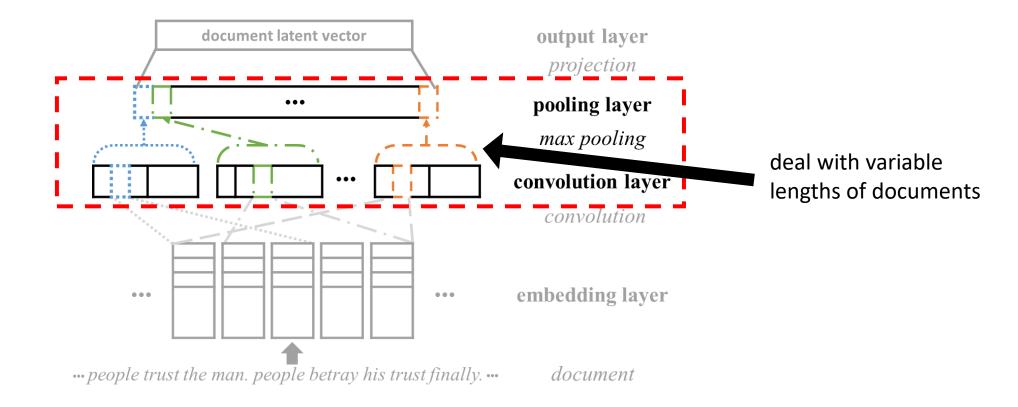
Convolution layer – *contextual information*

• For example (window size: 3)



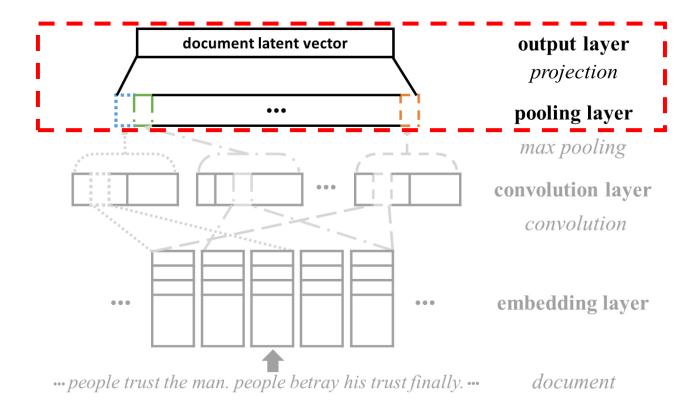
Pooling layer – representative information

• Extract representative features from the convolutional layer



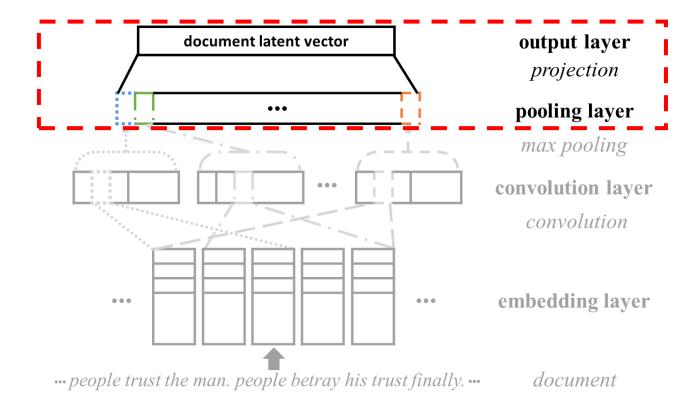
Output layer – high level features of documents

• Project representative features to a *k*-dimensional space



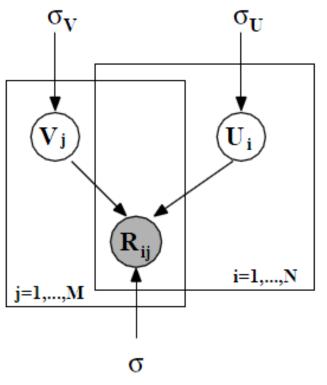
Then, how to predict ratings?

• However, the direct usage of CNNs is not suitable for a recommendation task.



Probabilistic Matrix Factorization (PMF) [NIPS`08]

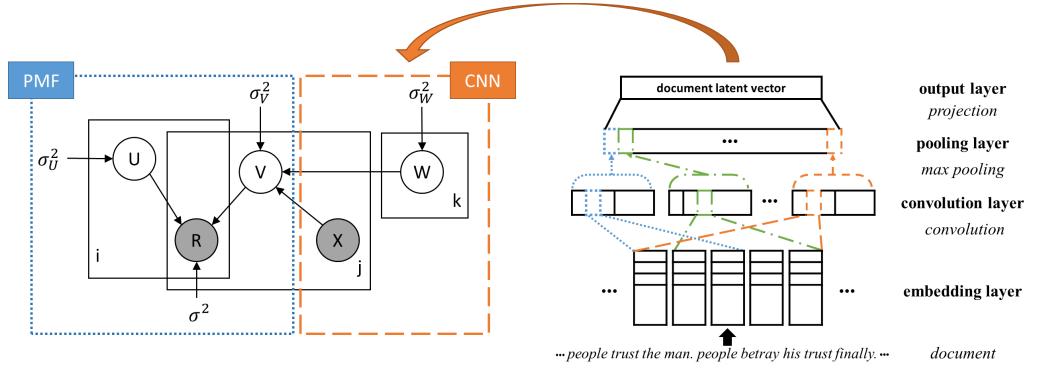
• Ratings can be approximated by probabilistic methods.



<The graphical model of PMF>

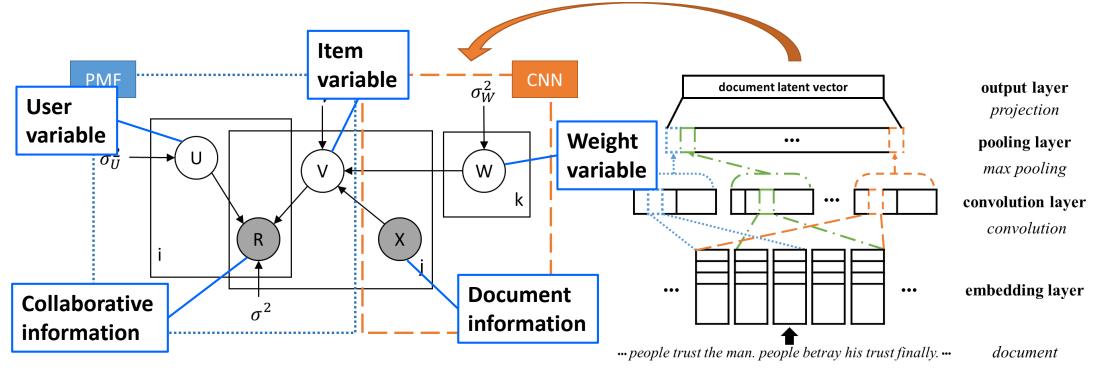
How about PMF + CNN?

- Overview of ConvMF
 - We integrate CNN into PMF for the recommendation task.



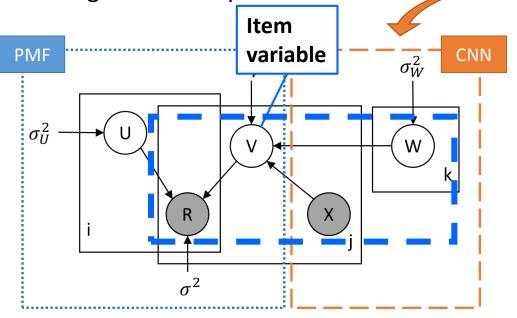
Graphical model of ConvMF

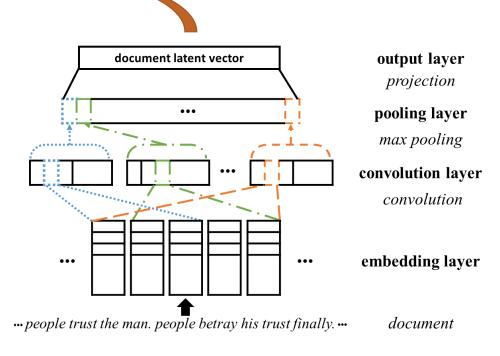
- Overview of ConvMF
 - We integrate CNN into PMF for the recommendation task.



Key of connection – Item variable

- Overview of ConvMF
 - Item variable plays a role of the connection between PMF and CNN in order to exploit ratings and description documents.





Optimization Methodology

- Use maximum a posteriori to solve U, V and W
 - $\max_{U,V,W} p(U,V,W | R, X, \sigma^2, \sigma_U^2, \sigma_V^2, \sigma_W^2) =$ $\max_{U,V,W} p(R | U, V, \sigma^2) p(U | \sigma_U^2) p(V | W, X, \sigma_V^2) p(W | \sigma_W^2)$
 - By taking negative logarithm,

$$\mathcal{L}(U, V, W) = \sum_{i}^{N} \sum_{j}^{M} \frac{I_{ij}}{2} (r_{ij} - u_{i}^{T} v_{j})_{2} + \frac{\lambda_{U}}{2} \sum_{i}^{N} ||u_{i}||_{2}$$
$$+ \frac{\lambda_{V}}{2} \sum_{j}^{M} ||v_{j} - cnn(W, X_{j})||_{2} + \frac{\lambda_{W}}{2} \sum_{k}^{|w_{k}|} ||w_{k}||_{2},$$

• Use coordinate descent to update latent models per iteration

$$u_i \leftarrow (VI_iV^T + \lambda_U I_K)^{-1}VR_i$$
$$v_j \leftarrow (UI_jU^T + \lambda_V I_K)^{-1}(UR_j + \lambda_V cnn(W, X_j))$$

 λ_{v} balances between ratings and documents

The ACM Conference Series on **Recommender Systems**

Optimization Methodology

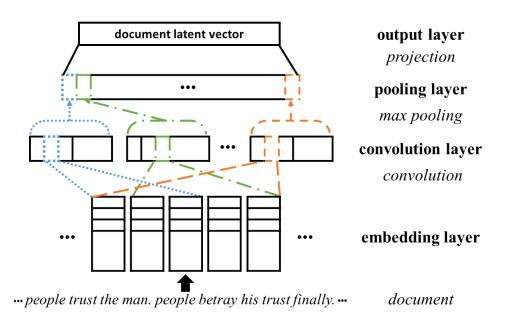
• However, *W* cannot be solved analytically as we can do for *U* and *V*.

Optimization Methodology

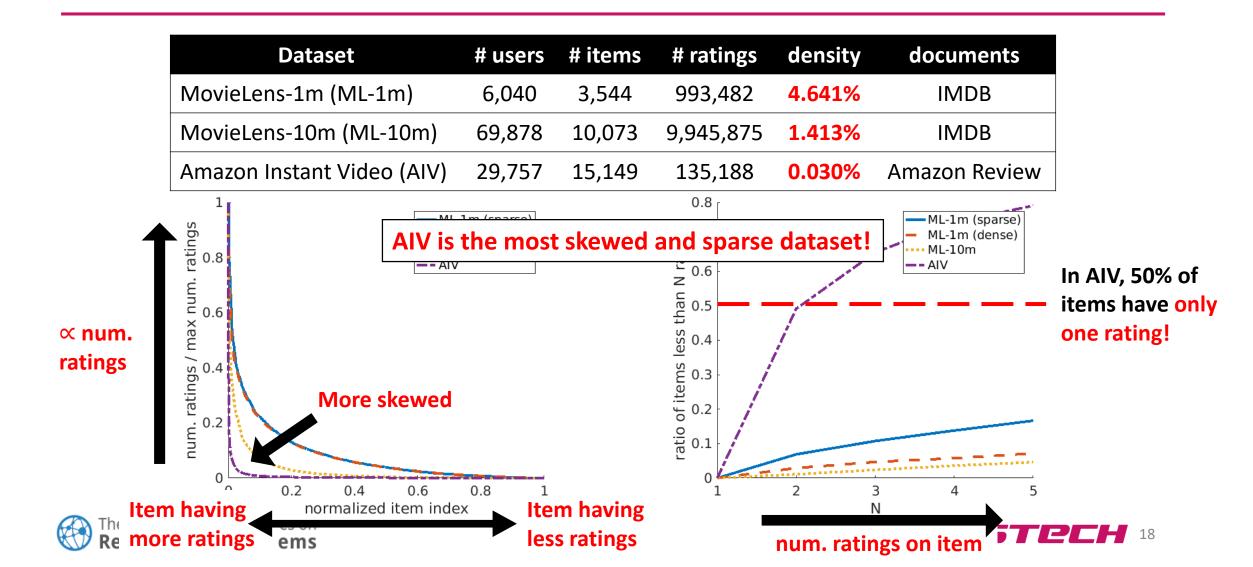
- However, W cannot be solved analytically as we can do for U and V.
- Fortunately, when U, V are temporarily fixed, loss function \mathcal{L} becomes an error function with regularized terms of neural net.

$$\mathcal{E}(W) = \frac{\lambda_V}{2} \sum_{j}^{M} \|(v_j - cnn(W, X_j))\|^2 + \frac{\lambda_W}{2} \sum_{k}^{|w_k|} \|w_k\|^2 + \text{constant}$$

 To optimize W, we use backpropagation algorithm with given target value v_j.



Explicit feedback datasets (range from 1 to 5)



Experiment Setting

• Competitor

- *PMF* [NIPS`08] conventional MF
- *CTR* [KDD`11] the state-of-the-art LDA-integrated recommendation
- *CDL* [KDD`15] the state-of-the-art SDAE-integrated recommendation
- ConvMF our proposed model
- ConvMF+ our proposed model with the pre-trained word embedding model (Glove)

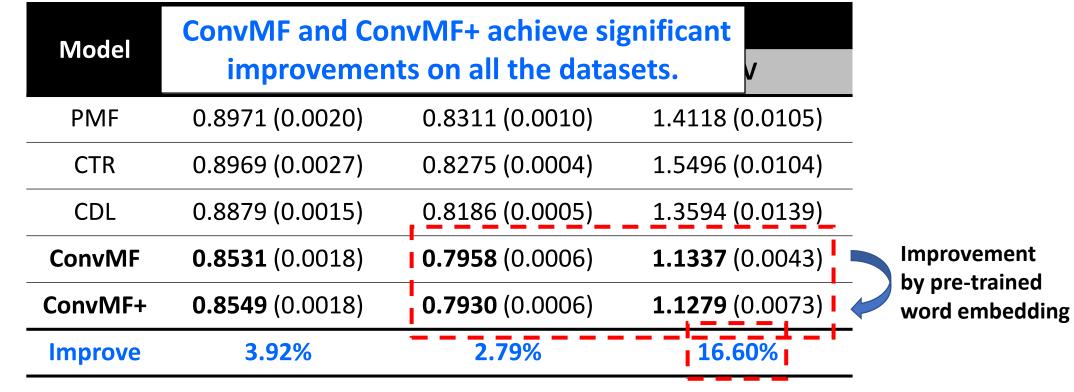
• Measure

• Follow the convention in recommender system.

$$\text{RMSE} = \sqrt{\frac{\sum_{i,j}^{N,M} (r_{ij} - \hat{r}_{ij})^2}{\# \text{ of ratings}}}$$

Overall performance comparison

• RMSE – training / valid / test dataset (80% / 10% / 10%)

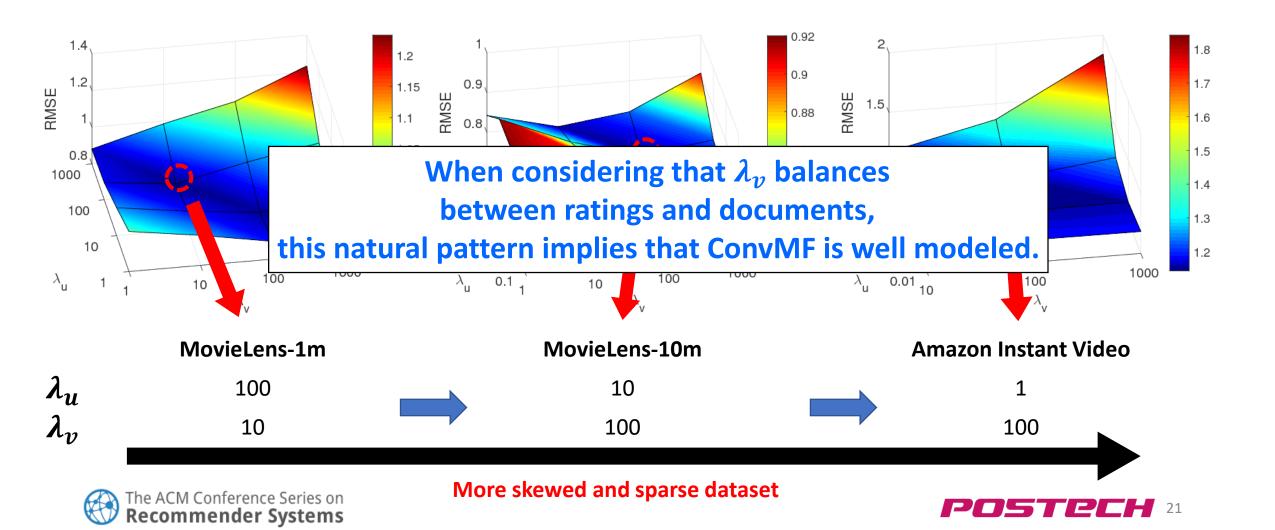


extremely sparse dataset!

PISTPI

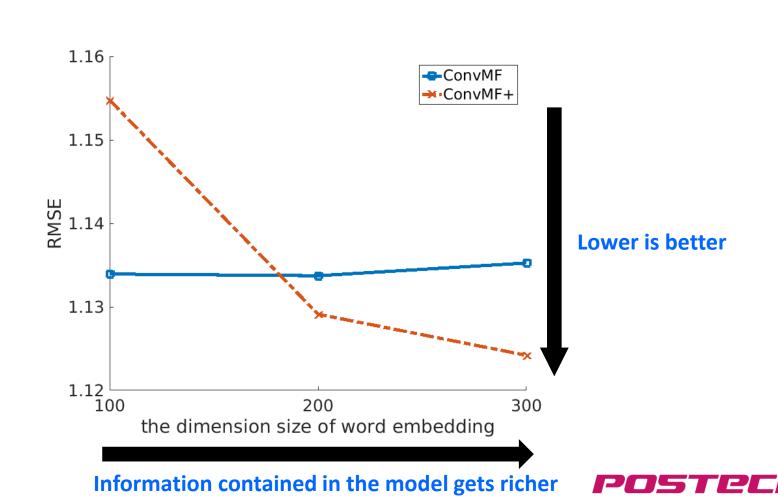
20

Best performing parameter analysis – λ_u and λ_v



Impact of pre-trained word embedding model

• On AIV dataset



22

Case study of subtle contextual differences

The only max feature value affects the performance of ConvMF. → A higher value has more chance to affect the performance!

	Phrase captured by W_{c}^{11}	max(c ¹¹)	Phrase captured by W _c ⁸⁶	max(c ⁸⁶)	
as a verb 🗪	people trust the man	0.0704	betray his trust finally	0.1009	🖛 as a noun
	Test phrases for W_c^{11}	max(c _{test} ¹¹)	Test phrases for W _c ⁸⁶	max(c _{test} ⁸⁶)	
as a verb	people believe the man	0.0391	betray his believe finally	0.0682	🛑 as a verb
as a noun 🗪	people faith the man	0.0374	betray his faith finally	0.0693	as a noun
irrelevant 🗪	people tomas the man	0.0054	betray his tomas finally	0.0480	irrelevant

 W_c^{11} is more likely to capture "**trust**" as a **verb** W_c^{86} is more likely to capture "**trust**" as a **noun**

ConvMF distinguishes a subtle contextual difference of the term "trust"

Conclusion

- We demonstrate that considering contextual information provides a deeper understanding of description documents
- We develop a novel document context-aware recommendation model, ConvMF, that seamlessly integrates CNN into PMF in order to capture contextual information for the rating prediction
- Since ConvMF is based on PMF, ConvMF is able to be extended to combining other MF-based recommendation models such as SVD++

Thank you

- ConvMF webpage
 - http://dm.postech.ac.kr/ConvMF
- Any question?

Reference

- [KDD`15] Collaborative deep learning for recommender systems
- [RecSys`14] Ratings meet reviews, a combined approach to recommend
- [RecSys`13] Hidden factors and hidden topics: Understanding rating dimensions with review text
- [IJCAI`13] Hierarchical Bayesian matrix factorization with side information
- [NIPS`13] Deep content-based music recommendation
- [ICML`12] Collaborative topic regression with social matrix factorization for recommendation systems
- [KDD`11] Collaborative topic modeling for recommending scientific articles
- [JMLR`11] Natural language processing (almost) from scratch
- [ACL`14] A convolutional neural network for modelling sentences
- [EMNLP`14] Convolutional neural networks for sentence classification
- [EMNLP`14] Modeling interestingness with deep neural networks
- [CIKM`14] A latent semantic model with convolutional-pooling structure for information retrieval

