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Matrix Factorization (MF)

* A popular model-based collaborative filtering for recommendation
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Matrix Factorization (MF)

* A popular model-based collaborative filtering for recommendation

matrix completion
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Matrix Factorization (MF)

* A popular model-based collaborative filtering for recommendation
matrix completion
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Matrix Factorization (MF)

* A popular model-based collaborative filtering for recommendation
matrix completion
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Matrix Factorization (MF)

* A popular model-based collaborative filtering for recommendation
matrix completion
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User and item latent models in 2D space!

A Beautiful Mind

(drama) 4.5 Interstellar

e rating matrixcomes extreggel(@8%lse. .
| 3

- “"‘,"’;E“'L‘}.“

Pl

Ja¥
Ite mS % :, =
?
? Sy actic;)n
# of users ? Dark Knight
(action)
O

# of items
:l> - Inception
I (action)

The ACM Conference Series on
Recommender Systems POSTERPLCH :



User and item latent models in 2D space!
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User and item latent models in 2D space!
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Common approaches

* To handle sparseness of a rating matrix, text information (review, synopsis,

abstract, etc.) has been widely used in recent researches. [KDD 15, RecSys"14,
RecSys 13, KDD 11]

The Dark Knight e i a description document
Plot Summary

Showing all 6 plot summaries

Set within a year after the events of Batman Begins, Batman, Lieutenant James
Gordon, and new district attorney Harvey Dent successfully begin to round up the
criminals that plague Gotham City until a mysterious and sadistic criminal mastermind
known only as the Joker appears in Gotham, creating a new wave of chaos. Batman's
struggle against the Joker becomes deeply personal, forcing him to "confront
everything he believes" and improve his technology to stop him. A love triangle
develops between Bruce Wayne, Dent and Rachel Dawes.

R —

- Written by Leon Lombardyi
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Common approaches

* Trial to understand description documents for recommendation
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Common approaches

* Trial to understand description documents for recommendation

* Collaborative topic modeling for scientific articles (CTR) [KDD"11]
* Latent Dirichlet Allocation (LDA)
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Common approaches

* Trial to understand description documents for recommendation

* Collaborative topic modeling for scientific articles (CTR) [KDD"11]
* Latent Dirichlet Allocation (LDA)

* Collaborative deep learning for recommender system (CDL) [KDD'15]
» Stack Denoising AutoEncoder (SDAE)
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Drawback of common approaches

* Trial to understand description documents for recommendation
* Collaborative topic modeling for scientific articles (CTR) [KDD"11]

* Latent Dirichlet Allocation (LDA)

* Collaborative deep learning for recommender system (CDL) [KDD'15]

» Stack Denoising AutoEncoder (SDAE)

* However, LDA and SDAE analyze “bag of words models” of item descriptions to

generate latent models.
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“Contextual information” in documents

e Considering surrounding words and word order as “contextual information”
improves the accuracy of word vectors in the word embedding.

 Word2Vec [NIPS 13]

* What if recommender systems are able to capture contextual information in
documents?

* Generate more accurate item latent models through a deeper understanding of item
descriptions.

* Thus, contextual information should be considered for better recommendation!
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Our proposed model

* We develop a novel document context-aware recommendation model,
Convolutional Matrix Factorization (ConvMF).
* To consider contextual information

* To effectively exploit both ratings and description documents

* To jointly optimize the recommendation model in order to properly predict ratings to items of
users
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Inspired by Convolutional Neural Network (CNN)

* For the NLP and IR tasks, convolutional neural networks (CNNs) have been mainly
developed to consider local contextual information in a document.

* NLP: [JMLR'11, ACL 14, EMNLP14], IR: [EMNLP 14, CIKM 14]

* An example of CNN architecture for sentiment classification. [EMNLP 2014]
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Overview of our CNN architecture

* Trial to generate more accurate item latent models

document latent vector output layer

projection

pooling layer
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Embedding layer — word embedding

e Transform a raw description document into a numeric document matrix.
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Convolution layer — contextual information

* Extract contextual features from a document matrix.
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Convolution layer — contextual information

* For example (window size: 3)

C = [C1; €2, s Ciy ovy Cl—WS+1]
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Pooling layer — representative information

* Extract representative features from the convolutional layer

pooling layer

I see

I e, Sra max pooling
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Output layer — high level features of documents

* Project representative features to a k-dimensional space

document latent vector output layer

: |
I projection I
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Then, how to predict ratings?

 However, the direct usage of CNNs is not suitable for a recommendation task.

document latent vector output layer
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Probabilistic Matrix Factorization (PMF) [NIPS 08]

* Ratings can be approximated by probabilistic methods.
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How about PMF + CNN?

* Overview of ConvMF
* We integrate CNN into PMF for the recommendation task.
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Graphical model of ConvMF

* Overview of ConvMF
* We integrate CNN into PMF for the recommendation task.
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Key of connection — Item variable

e Overview of ConvMF

* Item variable plays a role of the connection between PMF and CNN in order to exploit

ratings and description documenV
Item

variable |
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Optimization Methodology

* Use maximum a posteriori tosolve U, Vand W

. lI]nVaa(/p(U V,W|R,X,02, of,a0Z, 08) =

maxp(R|U,V, a)p(U|ad)p(V|W, X, a2)p(W |ad)

* By taking negative logarithm,
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* Use coordinate descent to update latent models per iteration

TP 7T frT - —1 / .
wi = (VILVS +Aulg) VR, A, balances between ratings and
— (VLU + M\l ) HUR; + Avenn(W, X)) documents
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Optimization Methodology

 However, W cannot be solved analytically as we can do for U and V.
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Optimization Methodology

 However, W cannot be solved analytically as we can do for U and V.

* Fortunately, when U,V are temporarily fixed,
loss function L becomes an error function with regularized terms of neural net.

M

)\T, S 9 document latent vector output layer
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* To optimize W, we use backpropagation w cmbedding layer
algorithm with given target value v;.
« people trust the man. people betray his trust finally. document
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Explicit feedback datasets (range from 1 to 5)

Dataset #users #items #ratings density documents
MovielLens-1m (ML-1m) 6,040 3,544 993,482 4.641% IMDB
Movielens-10m (ML-10m) 69,878 10,073 9,945,875 1.413% IMDB
Amazon Instant Video (AlIV) 29,757 15,149 135,188 0.030% Amazon Review

1

0.8[

'

= ML-1m (sparse)

[ WTEE] i Ml

fg”o . AlV is the most skewed and sparse dataset! | {7 jim (dense
© == = — AlV
- == | 2 06| - In AIV, 50% of
2 0.6 Gos items have only
b +! .
< num. o D04l one rating!
Q
ratings = ‘0
g g0.4 £ 0.3
g More skewed =05
e 0.2 g
g -‘E 0.1
0- ———E -— 0
- Item havmg normallzed |tem mdex |tem havmg
¢
% p ¥ IPLCH ¢

Re more ratings less ratings num. ratings on item



Experiment Setting

* Competitor

PMF [NIPS 08] — conventional MF

CTR [KDD 11] — the state-of-the-art LDA-integrated recommendation

CDL [KDD15] — the state-of-the-art SDAE-integrated recommendation

ConvMF — our proposed model

ConvMF+ — our proposed model with the pre-trained word embedding model (Glove)

* Measure
* Follow the convention in recommender system.
N, u 232
RMSE = E )
# Df ratings
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Overall performance comparison

 RMSE - training / valid / test dataset (80% / 10% / 10%)

Model

ConvMF and ConvMF+ achieve significant

improvements on all the datasets

by pre-trained

1.1337 (0.0043) : D Improvement
word embedding

PMF 0.8971(0.0020)  0.8311(0.0010)  1.4118(0.0105)
CTR 0.8969 (0.0027)  0.8275(0.0004)  1.5496 (0.0104)
cDL 0.8879(0.0015)  0.8186(0.0005)_ _ 1.3594(0.0139)
ConvMF  0.8531 (0.0018) | 0.7958 (0.0006)
ConvMF+  0.8549 (0.0018) 1 10.7930 (0.0006) 1. 1279 (0.0073) ¢
Improve 3.92% T 2F% - - T T T 1 16.60%|
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Best performing parameter analysis—A,, and 4,,

0.92
. 1 2
1.2 1.8
0.9
12 1.15 0.9 1.7
) 1.5
= 0.88 ]
= 1.1 0.8 1.6

@ @

= =

(A (A
0.8 . . 11.5
1000 | When considering that 4, balances |
100\ between ratings and documents, {15

this natural pattern implies that ConvMF is well modeled.
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Impact of pre-trained word embedding model

* On AlV dataset
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Case study of subtle contextual differences

The only max feature value affects the performance of ConvMF.
=» A higher value has more chance to affect the performance!

Phrase captured by W 1! max(cl!) Phrase captured by W8  max(c8®)

asaverb s  people trust the man 0.0704 betray his trust finally 0.1009 4mm as a noun

Test phrases for W11 max(c

1) Test phrases for W  max(c,.2°)

test test

asaverb mm people believe the man  0.0391  betray his believe finally ~ 0.0682 4= asaverb
asanoun mmp people faith the man 0.0374 betray his faith finally 0.0693 4mm 353 noun
irrelevant m@p  people tomas the man 0.0054 betray his tomas finally 0.0480 4= irrelevant

Wt is more likely to capture “trust” as averb  W,2%is more likely to capture “trust” as a noun

ConvMF distinguishes a subtle contextual difference of the term "trust"
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Conclusion

 We demonstrate that considering contextual information provides a deeper
understanding of description documents

* We develop a novel document context-aware recommendation model, ConvMF,
that seamlessly integrates CNN into PMF in order to capture contextual
information for the rating prediction

* Since ConvMF is based on PMF, ConvMF is able to be extended to combining
other MF-based recommendation models such as SVD++
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Thank you

 ConvMF webpage
e http://dm.postech.ac.kr/ConvMF

* Any question?
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