

Predicting User Purchase in E-commerce by Comprehensive Feature Engineering and Decision Boundary Focused Under-Sampling [RecSys Challenge 2015]

Chanyoung Park, Donghyun Kim, Jinoh Oh and Hwanjo Yu

POSTECH

The Task

Given a sequence of click events performed by some user during a typical session in an e-commerce website,

- 1. Predict which session will end up with a purchase
- 2. Predict items that are going to be bought in the session

Data

- Click dataset, test dataset
 - SessionID
 - TimeStamp
 - ItemID
 - Category
- Purchase dataset
 - SessionID
 - TimeStamp
 - ItemID
 - Price
 - Quantity

Data	Number of entries
Click dataset (yoochoose_clicks.dat)	33,003,944
Purchase dataset (yoochoose_buys.dat)	1,150,753
Test dataset (yoochoose_test.dat)	8,251,791

Challenges

• Given data itself lack sufficient information

- Existence of missing values
- No user related information (User demographic information)
- Not enough item related information
- Hard to build accurate model
- Massive volume of dataset
 - 33 million clicks, 1 million purchases
 - Increases model training time and memory usage
- Highly imbalanced class distribution
 - Non-purchased clicks : Purchased clicks = 25 : 1
 - Model may be biased towards the majority class \rightarrow poor accuracy

Our Approach

- Comprehensive Feature Engineering (CFE)
 - To make up for insufficiency of information
- Decision Boundary Focused Under-Sampling (DBFUS)
 - To reduce model training time and memory usage
 - To cope with class imbalance problem

Problem Setting: Binary classification

- Recall that there are two tasks in *RecSys Challenge 2015*
- We integrated these two tasks and converted them into a simple binary classification problem
 - I. Label each click instance in click dataset using purchase dataset
 - Clicks that contain a purchased item are labeled as positive, otherwise negative
 - II. For each given click instance, we predicted whether or not the click will end up with purchase regardless of the sessionID
 - III. After the prediction process, we can tell that a session with any positively predicted click is a session involving purchase

Problem Setting: Binary classification

• Example of labeling click dataset

System Overview

Preliminaries

- Class imbalance Problem
- # of Negative class instances >> # of Positive class instances

(Non-purchased clicks) (Purchased clicks)

- Classifiers are biased towards the majority class resulting in poor accuracy in correctly classifying the positive class instances
- Different methods
 - Over-sampling
 - Under-sampling
 - Hybrid

Preliminaries

- Gradient Boosting Classifier (GBT)

- Predictive modeling algorithm for classification & regression
- Decision tree is typically used as a base learner
- Boosting
 - Multiple weak learners are combined to improve overall performance
- Provides *feature importance* information

- Feature Engineering implies ...
 - Imputation of missing values
 - Extraction of informative features from the original data (Engineered feature)
- Feature selection
- Verification of the quality of CFE using Principal Component Analysis (PCA)

- Imputation of missing values

<u>Category</u> (0: missing, 1~12: valid, >12: brand)

- Missing category information of an item can be induced by looking at the data of other months
- Category = "0" (Missing)
 - Converted into "1 ~ 12" if possible, otherwise remains as "0"
- Category > "12" (Brand)
 - Converted into "1 ~ 12" if possible, otherwise converted into "13"

- Imputation of missing values

• <u>Price / Quantity</u> (0: missing)

- Price / quantity = "0" for *item* A in April → look if other logs of April contain information about *item* A
 - Fill in the missing entries with the mean value of the *item A* in April
- No other logs of April contain information about *item A*
 - Fill in the missing entries with the mean value of the *item A* in the entire data
- No price / quantity information about *item A* at all
 - Fill in the missing entries with the mean value of all items

- Engineered Features

No.	Feature Name	Туре	Description
1	Day	Categorical	31 days of a month are divided into 4 bins according to the number of clicks forming a binary vector of length 4
2	Weekday	Categorical	7 weekdays of a week form binary vector of length 7
3	Hour	Categorical	24 hours of a day are divided into 5 bins according to the number of clicks forming binary vector of length 5
4	Category	Categorical	a binary vector of length 14 is formed after the imputation step
5	Price / Quantity	Numerical	price and quantity of items purchased
6	Category S	Boolean	whether an item is in sale or not
7	Last Session	Boolean	whether an instance is the last click in the session or not
8	One category in a session	Boolean	whether the user browsed only one category in a session or not
9	Category ratio vector	Numerical Vector	If there are 3 clicks occurred in a session and each one of them clicked on a different category, then (0.33, 0.33, 0.33)
10	Weekend	Boolean	whether it is weekend or not

No.	Feature Name	Туре	Description
11	SNC	Numerical	number of clicks in a session
12	INW	Numerical	number of clicks of an item among the whole training data
13	INC	Numerical	number of clicks of an item in a session
14	IBW	Numerical	number of purchases of an item among the complete training data
15	DUR	Numerical	duration of a session in seconds
16	S1	Numerical	INC / SNC. Higher value implies higher probability of ending with purchase
17	S2	Numerical	IBW / INW. Higher value implies higher probability of ending with purchase
18	IMC	Numerical	number of clicks of an item in a month
19	IMB	Numerical	number of purchases of an item in a month
20	IR1	Numerical	ratio of an item in a session
21	IR2	Numerical	ratio of an item clicks in a session
22	CR1	Numerical	ratio of a category in a session
23	CR2	Numerical	ratio of a category clicks in a session

Comprehensive Feature Engineering (CFE) - Feature Selection

- Gradient Boosting Classifier provides *feature importance* information
- Calculated feature importance scores for numerical features
 - Categorical features give useful information as a whole

Feature	Import.	Feature	Import.	Feature	Import.
Р	0.036	IBW	0.005	IMB	0.037
\mathbf{Q}	0.042	DUR	0.146	IR1	0.034
SNC	0.027	S1	0.025	IR2	0.027
INW	0.034	S2	0.062	CR1	0.007
INC	0.05	IMC	0.04	CR2	0.031

Feature importances of numerical features

- Quality verification of engineered features
- To verify the quality of engineered features
 - I. Perform Principal Component Analysis (PCA) on the data represented by engineered features
 - II. Take first two principal components to visualize the data

- Quality verification of engineered features
- The instances are <u>surprisingly well divided</u> according to the first two principal components
 - Our feature engineering process made success in extracting valuables features that represent the data!

Decision Boundary Focused Under-Sampling (DBFUS)

Decision Boundary Focused Under-Sampling (DBFUS)

- Perform under-sampling on the data of majority class while keeping all the data in the minority class
 - To reduce model training time and memory usage
 - To alleviate class imbalance problem
 - Non-purchased clicks : Purchased clicks = 25 : 1
- Consider the distance to the decision boundary such that more data is sampled near the decision boundary

Decision Boundary Focused Under-Sampling (DBFUS)

- I. Calculate decision boundary θ using click dataset
- II. Keep positive data and only sample from negative data
 - A half from
 - $\theta < instances < \theta + \varepsilon$
 - The other half from

instances $> \theta + \varepsilon$

Decision Boundary Focused Under-Sampling (DBFUS)

- *"Non-purchased clicks : Purchased clicks = 3 : 1"* shows the best performance
- Reduced imbalance ratio from 25:1 to 3:1
 - Reduced model training time and memory usage + alleviated class imbalance problem
 - However, may cause information loss
 - Solution: Independently perform DBFUS 25 times and train 25 different models
- "Ensemble of ensembles"
 - Gradient boosting classifier is used to train the model

Learning Strategy

- Splitting Monthly
 - Purchase patterns for each month are significantly different
 - Thus, we split the data monthly and constructed our model for each month
 - Improvement by more than 5,000 points on the leaderboard!

Summary of Results

- Implemented using *Python Scikit-Learn*
- Parameters for gradient boosting classifier

Parameters	Value
num estimators	5000
max leaf nodes	20
max depth	N/A
min samples split	1
learning rate	0.17
max features	number of whole features

Summary of Results

• Final result

Model	Leaderboard score
Less features + No sampling + GBT	49587.8
CFE + DBFUS + Neural Net	49444.4
CFE + No sampling + GBT	52525.5
CFE + DBFUS + GBT	54403.6

Summary of Results

• Training time

Conclusion

- Challenges for *RecSys Challenge 2015*
 - Insufficiency of information
 - Inefficiency in model training time and memory usage
 - Class imbalance problem
- We achieved 54,403.6 in the final leaderboard (10th/569 teams)

Solution

Comprehensive Feature Engineering (CFE) Decision Boundary Focused Under-Sampling (DBFUS)

