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ABSTRACT
Existing review-aware recommendation methods represent users
(or items) through the concatenation of the reviews written by (or
for) them, and depend entirely on convolutional neural networks
(CNNs) to extract meaningful features for modeling users (or items).
However, understanding reviews based only on the raw words of re-
views is challenging because of the inherent ambiguity contained in
them originated from the users’ different tendency in writing. More-
over, it is inefficient in time and memory to model users/items by
the concatenation of their associated reviews owing to considerably
large inputs to CNNs. In this work, we present a scalable review-
aware recommendation method, called SentiRec, that is guided to
incorporate the sentiments of reviews when modeling the users
and the items. SentiRec is a two-step approach composed of the
first step that includes the encoding of each review into a fixed-size
review vector that is trained to embody the sentiment of the re-
view, followed by the second step that generates recommendations
based on the vector-encoded reviews. Through our experiments,
we show that SentiRec not only outperforms the existing review-
aware methods, but also drastically reduces the training time and
the memory usage. We also conduct a qualitative evaluation on the
vector-encoded reviews trained by SentiRec to demonstrate that
the overall sentiments are indeed encoded therein.

CCS CONCEPTS
• Information systems→ Recommender systems;
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1 INTRODUCTION
According to the recent technical report from Amazon.com [13],
estimated 30% of their page views were from recommendations. As
a consequence, a plethora of research has been devoted to building
successful recommender systems. Among various recommendation
techniques, the most successful approach is collaborative filtering
(CF) [5]; it recommends items to a user based on previous ratings
of other users whose tastes are similar to the target user. However,
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this in turn implies that the performance of CF will suffer without
a sufficient amount of ratings previously given by users, which is
common in reality.

To compensate for the sparsity of the user–item rating data,
side information related to users and items, such as user social
network [9], user review documents [12, 14–16], and item affinity
network [10] has been actively leveraged. In this work, we specifi-
cally focus on user review-aware recommendation. User reviews
are particularly useful for alleviating the sparsity of user ratings,
because the reviews not only embody a user’s intention behind
the ratings, but also contain conspicuous item properties. That is
to say, if reviews are fully exploited, we can build recommender
systems even with few ratings provided, which naturally alleviates
the sparsity of user–item rating data.

To extract meaningful features from review documents, deep
learning-based approaches have been recently proposed [1, 15].
More specifically, convolutional neural network (CNN)-based rec-
ommendation methods have gained attention [4, 12, 16] thanks to
the capability of CNNs to capture general contextual features from
documents. DeepCoNN [16] adopts two CNNs, where one of them
models users through reviews written by the users, while the other
models items through reviews written for the items. Building upon
DeepCoNN, Seo et al. propose D-Attn [12] that further adopts the
dual local and global attention mechanism on the CNNs, which
endow the recommender systems with interpretability regarding
the reviews that are used for modeling users and items.

Despite their state-of-the-art performance, they are limited in
that users and items are modeled by the reviews consisting of raw
words. However, each user has different tendency in writing a re-
view and thus words contain an inherent ambiguity, which makes
it hard to precisely understand the user’s intent. As a concrete
example, let’s assume that two different users provided reviews
that contain the following identical sentence: “... I like the laptop...
”. Whereas a tolerant user would use the word “like” to describe
an adequate laptop, a critical user would not use it unless he is
completely satisfied with the laptop. However, the previous review-
aware methods simply aggregate all the associated reviews and
feed them to CNNs expecting the CNNs to automatically extract
meaningful features for modeling users and items, which does not
suffice for precisely modeling the users and items. This phenom-
enon compounds when users provided only a few reviews, i.e.,
cold-start [11], which is common in reality. Moreover, as the exist-
ing approaches model each user/item by the concatenation of all
the words from every associated review, the size of input for CNNs
becomes considerably large, which makes the above approaches
practically not feasible in the real-world applications.

In this paper, to overcome the above limitations of the existing
methods, we propose a novel sentiment guided review-aware rec-
ommendation method, called SentiRec. The core idea is to leverage
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Figure 1: Comparisons of architectures between the baseline
methods vs. SentiRec1.

the overall sentiments of reviews that are represented as ratings that
accompany the reviews. In our previous example, if we have a prior
knowledge that the tolerant user gave a 3-star rating to the laptop
while the critical user gave a 5-star rating, we will be able to more
accurately understand the review, which in turn enables us to better
model users and items.

Our proposed method consists of two steps. In the first step,
instead of representing a review by the concatenation of its con-
stituent raw words as in the previous methods, we encode each
review into a fixed-size review vector that is guided to embody the
sentiment information of the review. More precisely, we regard a
rating that accompanies a review as a summarization of the overall
sentiment of a user on an item, and train a CNN that is designed to
predict the rating given the review as input, after which a fixed-size
vector for the review is obtained by taking the output of the last
hidden layer. The second step resembles the training process of
DeepCoNN and D-Attn, but is distinguished in that users/items
in SentiRec are represented by the concatenation of their associated
fixed-size review vectors, rather than raw words. The advantages
of SentiRec compared with the previous methods are: 1) we obtain
more accurate representations for reviews by incorporating users’
overall sentiments on items into reviews, which removes the pos-
sible ambiguity contained in the reviews. This in turn results in a
better understanding of the reviews, and leads to more accurate
representations for users and items resulting in an improved rec-
ommendation accuracy. Moreover, 2) we drastically reduce the size
of the input, which gives us scalability in terms of the training time
and the memory usage. Our experiments show that SentiRec out-
performs the state-of-the-art baselines, while being considerably
more efficient. Moreover, we perform a qualitative evaluation on
the review vectors trained by SentiRec to ascertain that the overall
sentiments are indeed encoded in the vectors.

2 BACKGROUND
In this section, we explain how the existing review-aware recom-
mendationmethods, i.e., DeepCoNN [16] and D-Attn [12], represent
users and items. Note that we assume every rating accompanies a
review. Given a review document du,i ∈ Rk×T on item i written
by user u, where k and T denote the latent dimensionality of a
word and the average number of words contained in each review,
repectively, all the reviews written by user u are concatenated to

1T can be different for each review as T is the average number of words contained in
each review.

a single user document matrix DU
u ∈ Rk×(|N I

u |T ), N I
u denoting a

set of items rated by user u. Likewise, an item document matrix
for item i is represented as DI

i ∈ R
k×(|NU

i |T ), where NU
i denotes a

set of users that rated item i . Then, DU
u and DI

i are independently
fed into two parallel CNNs; one for users and the other for items.
After convolutions and max-pooling layers, these CNNs are jointly
combined in the last hidden layer to predict the rating of item i
given by user u, i.e., ru,i . The architecture is shown in Figure 1a.

As mentioned previously, raw words contained in reviews con-
tain an inherent ambiguity owing to users’ tendency in writing, and
thus entirely depending on the CNNs to extract features that are
useful for modeling users and items are prone to error. Moreover,
the size of the user/item document matrix DU

u /DI
i is considerably

large making the above methods impractical. Therefore, from the
following section, we introduce our two-step approach to overcome
the above limitations.

3 METHOD: SentiRec
Step 1: Incorporating Review Sentiments. The goal of this
step is to encode each review du,i into a fixed-size review vec-
tor fu,i ∈ Rl , such that the overall sentiment of user u on item i
is incorporated. We employ a CNN among various methods [2, 3]
to leverage the ratings that accompany the reviews. More pre-
cisely, we build a CNN, named Net1, to predict the rating ru,i ∈ R
accompanying a review given by user u on item i using the re-
view document du,i . Formally, Net1 performs convolution oper-
ations on du,i using f -th convolution filter Wf ∈ Rk×j with the
window size set to j to extract the contextual features cft from
the document: cft = σ (Wf ∗ du,i(:,(t:t+j-1)) + b

f ) where ∗ is the con-
volution operator, bf ∈ R is a bias term for the f -th convolu-
tion filter, and σ is a non-linear function such as ReLU. By ap-
plying the f -th filter on the entire text du,i , we obtain a feature
map cfNet1 = [cf1 , c

f
2 , ..., c

f
t , ..., c

f
T−j+1]. Then, max-pooling is ap-

plied on the feature map to find the most important feature. i.e.,
ĉ
f
Net1 =max(cfNet1 ). Finally, with n different convolution filters, fol-
lowed by a fully connected layer (FC: Rn → Rl ), we obtain a vector
fu,i = FC([ĉ1Net1 , ĉ

2
Net1 , ..., ĉ

n
Net1 ]) ∈ Rl , which is passed to a fully

connected layer whose output is the predicted rating ru,i . Note
that fu,i generated by Net1 can be regarded as a fixed-size review
vector that incorporates the overall sentiment of user u on item i
contained in the review document du,i . The architecture of Net1
is illustrated in Figure 1b (left).

Step 2: Generating Recommendations. Having trained Net1
for all the provided reviews, we now proceed to generate the
actual recommendations, i.e., rating prediction. Aiming at pre-
dicting the rating ru,i that user u will give on item i , we merge
all the review vectors of reviews written by user u denoted by
FUu = [fu,i ]i ∈N I

u
∈ Rl×|N I

u | , and the reviews written for item i

denoted by FIi = [fu,i ]u ∈N I
i
∈ Rl×|NU

i | . Then we introduce two
parallel CNNs; one for modeling users (NetU2 ), and the other for
modeling items (NetI2). Their network structures are equivalent
to that of Net1, while they only differ in the way the convolution
operations are performed. To be precise, as the respective inputs



Table 1: Data statistics.
Datasets Office Grocery Clothing Sports
# of users 4,905 14,681 39,387 35,598
# of items 2,418 8,712 23,022 18,351
# of reviews 53,258 151,254 276,677 296,337
Avg. # words / review 168.8 109.9 69.2 99.9
Avg. # reviews / user 8.5 7.9 5.0 6.2
Avg. # reviews / item 17.2 3.3 8.6 12.0
Density 0.45% 0.12% 0.03% 0.05%

FUu and FIi to Net
U
2 and NetI2 are concatenated review vectors, the

order in which feature vectors are placed is not semantically mean-
ingful; unlike concatenated raw words. Therefore, the window size
of the convolution filters of NetU2 and NetI2 should be fixed to 1
to extract features from each review independently; unlike Net1
whose window size is set to j for extracting the contextual features
from a review document concatenated with raw words. It is impor-
tant to note that we also update the inputs FUu and FIi during the
model training to make the review vectors adapt to the recommen-
dation task. NetU2 performs convolution operations on FUu using p
convolution filters, which is followed by a max-pooling layer. After
a fully connected layer (FC: Rp → Rm ), we obtain the final output
of NetU2 given by hUu ∈ Rm , and we similarly obtain hIi ∈ Rm
from NetI2. Finally, we calculate a dot product [12] between two
vectors hUu and hIi , and obtain the predicted rating ru,i = ⟨hUu ,hIi ⟩.
We note that only the reviews used to train Net1 are used to train
NetU2 and NetI2. The architecture of Net

U
2 and NetI2 is illustrated

in Figure 1b (right).

Summary. In step 1, we encode each review into a fixed-size
review vector that incorporates the overall sentiment of a user
on an item, and leverage this vector-encoded review for modeling
users and items in step 2. We postulate that the exploitation of the
overall sentiment of a user helps us remove the possible ambiguity
contained in reviews, and gives us a high-quality representation
of each review. Moreover, by representing users and items by the
concatenation of their associated fixed-size review vectors rather
than raw words, SentiRec obtains scalability; the size of the inputs
to NetU2 and NetI2 is drastically reduced compared with that of
the previous review-aware methods. More precisely, the size of
the input for user u is reduced from O(k × |NU

i |T ) to O(l × |NU
i |)

yielding us at least T times of reduction in terms of the input size2,
which is significant considering that T , i.e., the average number of
words in a review, is usually large (Refer to Table 1).

4 EXPERIMENTS
Datasets. We evaluate our proposed method on four real-world
datasets extracted from Amazon.com by McAuley et al. [8]: Office
Products, Clothing Shoes & Jewelry, Grocery & Gourmet Food,
and Sports & Outdoors. All the reviews in the datasets accompany
user–item ratings (1 to 5). We remove users having fewer than five
ratings. Table 1 summarizes the detailed statistics of the datasets.
Baselines.
• MF [5]: A model-based CF method that projects users and items
into low-dimensional vectors solely based on user–item ratings.

2Note that in our experiments, k = 100 is twice as large as l = 50.

• DeepCoNN [16]: A CNN-based review-aware recommendation
method that models users and items by their associated reviews.

• D-Attn [12]: An extension of DeepCoNN that further employs
global and local attentions.

Since DeepCoNN and D-Attn have surpassed other review-aware
recommendation methods, such as CTR [14], HFT [7], CDL [15],
ConvMF [4], we omit them for brevity.
Evaluation Protocol and Metric.We divide each user’s ratings
into training/validation/test sets in a 80%/10%/10% split. We also
evaluate all methods on cold-start setting, where we only test on
users with fewer than five ratings in the training dataset. All of
the hyperparameters are tuned on the validation set by grid search.
The best performing parameters for SentiRec are: j = 4, n = 256,
l = 50, p = 5 and m = 10. As for D-Attn, we employ the best
parameters that are reported in the paper [12]. As our focus is on
recommendations in terms of rating prediction, we employ the
mean squared error (MSE), a metric that has been commonly used
for evaluating the performance of user rating prediction on the
Amazon datasets [7, 10]. Note that we fix the seed for random
initialization of all the methods.

Table 2: Test performance in terms of MSE. (Imprv. denotes
the improvement of SentiRec vs. the best competitor.)

Dataset Setting Method Imprv.MF DCNN D-Attn SentiRec

Office All 0.854 0.801 0.784 0.763 2.70%
Cold-start 1.039 0.981 0.956 0.910 4.81%

Grocery All 1.026 1.023 0.988 0.977 1.14%
Cold-start 1.093 1.091 1.064 1.044 1.91%

Clothing All 1.209 1.175 1.164 1.120 3.76%
Cold-start 1.241 1.213 1.214 1.164 4.04%

Sports All 0.957 0.944 0.902 0.879 2.46%
Cold-start 1.014 0.994 0.966 0.939 2.72%

4.1 Performance Analysis
Table 2 shows the test performance of all the methods in terms of
MSE. We have the following observations: 1) From the comparisons
between MF with the rest, we verify the benefit of leveraging re-
views as side information for recommendations. 2) We observe that
DeepCoNN is outperformed by D-Attn, which extends DeepCoNN
by adopting the attention mechanism. This verifies that both local
and global attentions help CNNs to better understand the reviews.
Note that we show this comparison here, as it is overlooked by
D-Attn [12]. 3) SentiRec shows the best performance among all
the baselines. This verifies that encoding the overall sentiments
of reviews into fixed-size vectors indeed help us remove possible
ambiguity contained in the reviews, which eventually facilitates
to more accurately model users and items. 4) The performance
improvement of SentiRec is consistently larger under the cold-start
setting. This implies that step 1 of SentiRec successfully learns the
general representations of reviews by sharing a network through-
out all the reviews, which enables step 2 of SentiRec to model
users and items even with a few reviews provided.

4.2 Scalability Analysis
Training time. Table 3 shows the the training time comparisons
between SentiRec and D-Attn [12], the best performing baseline.
As SentiRec is composed of two steps, we report the training time



Table 3: Training time until convergence in seconds. (Num-
bers in brackets: num. required epochs until convergence.)

Method Datasets
Office Grocery Clothing Sports

(a) D-Attn 9,018 (6) 12,762 (3) 28,494 (3) 51,900 (5)
(b) SentiRec-Step 1 546 (28) 3,303 (23) 3,104 (20) 6,867 (21)
(c) SentiRec-Step 2 60 (15) 75 (5) 75 (3) 150 (5)
Ratio = (a / (b +c)) 14.9 3.8 9.0 7.4

Table 4: GPU memory usage (MB)

Method Datasets
Office Grocery Clothing Sports

(a) D-Attn 5,069 5,227 5,211 5,671
(b) SentiRec-Step 1 835 1,353 1,361 1,361
(c) SentiRec-Step 2 659 887 1,081 1,167
Ratio = (a / (b +c)) 3.4 2.3 2.1 2.2

for each of them. We observe that SentiRec trains at most 14.9 times
faster than D-Attn. Such improvement is derived from the reduced
size of input review documents that are encoded into fixed-size
vectors in step 1.
Memory usage. Table 4 shows the GPU memory usage compar-
isons between SentiRec and D-Attn. We observe at most 3.4 times of
improvement of SentiRec over D-Attn. Again, such improvements
are due to the reduced input size.

From the performance analysis in Section 4.1 and the scalabil-
ity analyses in Section 4.2, we verify that SentiRec is a scalable
recommendation method that is practical in reality, which even
outperforms the state-of-the-art baselines in terms of the recom-
mendation accuracy. It is worth mentioning that the actual training
time and the memory usage of SentiRec are shorter and smaller,
respectively, because step 1 can be performed off-line in advance.

4.3 Qualitative Analysis
In this section, we aim to qualitatively demonstrate that the overall
sentiments of reviews are indeed encoded in the review vectors after
training SentiRec. To this end, we perform t-SNE [6] visualizations
on the review vectors fu,i obtained after training step 1 and step 2
of SentiRec. More precisely, each review vector fu,i is projected to a
point, and it is colored once by its associated rating ru,i , and another
time by the average of the ratings given by all users that rated the
item i and the ratings given to all items rated by the user u. i.e.,
0.5×(1/|NU

i |∑u ∈NU
i
ru,i +1/|N I

u |
∑
i ∈N I

u
ru,i ). The latter one is to

determine the general sentiment of useru and item i each associated
with fu,i . Figure 2a (left) shows that the review vectors are clearly
grouped into their corresponding ratings, verifying that step 1 is
correctly trained to reflect the ratings as expected. On the other
hand, whereas we observe from Figure 2a (right) that the reviews
with similar ratings are still grouped together even after training
step 2, the general sentiments are also revealed in the reviews as shown
in Figure 2b (right). Specifically, when compared with Figure 2b
(left), we can clearly see certain trends that the reviews belonging
to ratings 1, 2 and 3 are rearranged among themselves according
to the general sentiments of the reviews. Such rearrangements are
mainly exposed among lower rating gruops (1, 2 and 3), because the
general sentiments among each of the higher rating groups (4 and
5) tend to agree among themselves; users and items that give and
receive ratings of 5 (Figure 2a (left)) tend to give and receive high

(a) Associated ratings – Step 1 (left) and Step 2 (right) (b) Averaged ratings – Step 1 (left) and Step 2 (right)

5

4

3

2

Figure 2: t-SNE visualizations of vector-encoded reviews.

ratings in general (Figure 2b (left)). From the above analysis, we
can ascertain that the superior performance of SentiRec is indeed
derived from the general sentiments encoded in the review vectors.

5 CONCLUSIONS
We presented SentiRec, a review-aware scalable recommendation
method that is guided by the sentiments of reviews. In order to
remove the possible ambiguity contained in reviews, we leverage
users’ overall sentiments on items expressed through the ratings,
and encode the reviews into fixed-size vectors. Then, we model
users/items bymerging their associated reviews by using the vector-
encoded reviews, which gives us significant reduction in the train-
ing time and the memory usage, followed by two parallel CNNs to
generate recommendations. We demonstrate that SentiRec is both
effective and efficient compared with the state-of-the-art baselines.
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