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ABSTRACT
For online product recommendation engines, learning high-
quality product embedding that captures various aspects of
the product is critical to improving the accuracy of user
rating prediction. In recent research, in conjunction with
user feedback, the appearance of a product as side infor-
mation has been shown to be helpful for learning product
embedding. However, since a product has a variety of as-
pects such as functionality and specifications, taking into
account only its appearance as side information does not
suffice to accurately learn its embedding. In this paper,
we propose a matrix co-factorization method that leverages
information hidden in the so-called “also-viewed” products,
i.e., a list of products that has also been viewed by users
who have viewed a target product. “Also-viewed” prod-
ucts reflect various aspects of a given product that have
been overlooked by visually-aware recommendation meth-
ods proposed in past research. Experiments on multiple
real-world datasets demonstrate that our proposed method
outperforms state-of-the-art baselines in terms of user rat-
ing prediction. We also perform classification on the product
embedding learned by our method, and compare it with a
state-of-the-art baseline to demonstrate the superiority of
our method in generating high-quality product embedding
that better represents the product.

Keywords
Collaborative filtering; Product embedding; Online shop-
ping

1. INTRODUCTION
Triggered by the Netflix Prize [4] in 2009 whose goal was

to predict user ratings on movies based on previous user
feedback, the vast majority of research on recommender
systems [6] has focused on accurately predicting user rat-
ings [11]. To this end, it is crucial to learn high-quality prod-
uct embedding, the dimensions of which align with those of
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Figure 1: A target product and its “also-viewed” products.

user preference, since high-quality product embedding yields
higher accuracy in user rating prediction [3]. Therefore, re-
searchers have striven to learn high-quality product embed-
ding by incorporating various side information related to
products such as product reviews [10, 25, 26] and product
images [8, 9], which help to learn better product embed-
ding, and eventually lead to a better user rating prediction
accuracy.

In this paper, we study the varying importance of prod-
uct aspects for users in different product domains. Con-
sider a real-world online shopping scenario where users rate
products. What makes users assign high ratings to certain
products? That is, what aspects of a product influence user
ratings? The products’ inherent aspects such as appearance,
functionality or specifications certainly have a vital effect on
user ratings. However, the extent to which each aspect in-
fluences users varies among product domains. For example,
in clothing, the appearance of clothes is undoubtedly the
most influential factor, whereas in “Office Products”, such
aspects as functionality and conformance to specifications
mainly influence user ratings.

Notably, such phenomena are reflected in online shopping
browsing histories in the form of “also-viewed” products, i.e.,
a list of products that have also been viewed by users who
have viewed a target product. “Also-viewed” product infor-
mation can be obtained from browsing histories of users. As
an intuitive example, consider Example 1.

Example 1. Figure 1 shows examples of “also-viewed”
products in different product domains in Amazon1. In-
terestingly, while the “also-viewed” products in clothing

1http://www.amazon.com

1113



domain (Boys’ and Girls’ Clothing) look similar, those
in other domains (Automotive, Pet supplies, Office prod-
ucts) are not similar in appearance, but are functionally
related. Consider “Pet supplies” as an example. Given a
liquid flea repellent as a target product, the “also-viewed”
products include visually different but functionally re-
lated products, e.g., flea killing capsules and flea traps.

Example 1 shows that when users shop online, they pay
more attention to different aspects of products in different
product domains.

Although recent works [8, 9] have successfully taken into
account the appearance of products in visually-aware prod-
uct domain, they have yielded only a slight improvement
in other domains where aspects such as functionality and
specifications are significant for user ratings. This is be-
cause while every product domain has different aspects that
are more influential to user ratings as shown in Example 1,
existing methods only consider product appearance as side
information that plays an important role only in clothing
domain. Moreover, even in clothing, the appearance of a
product is not the only factor that influences user ratings,
and thus there is room for further improvement in modeling
user ratings. Furthermore, due to the inherent data sparsity,
existing methods have modeled users’ visual preferences only
based on the images of products rated by them in the past,
which are usually very few in number. Consequently, the
lack of rated products of users gives rise to the insufficiently
modeled visual preferences of the users, which eventually
degrades the accuracy of user rating prediction.

To address the aforementioned limitations of the exist-
ing works in the area, we propose a matrix co-factorization
method called Visual Matrix Co-Factorization (VMCF). Our
method leverages “also-viewed” products that reflect various
aspect of a given product that have been previously over-
looked by [8, 9]. Precisely, “also-viewed” products help sys-
tems to learn more high-quality product embedding for two
reasons. First, “also-viewed” products encode not only vi-
sual similarity, but also functional or specification-related
similarity, as shown in Example 1. Thus, we can capture
aspects overlooked by visual features of a product by lever-
aging “also-viewed” products, even in clothing domain. In
other domains, where the appearance of a product is not
as significant, the explicit relationships among products ex-
pressed through “also-viewed” information are even more
helpful than visual features in building more high-quality
product embedding. Second, since most products have an
insufficient number of ratings, the explicit relationships be-
tween each rated product and its unrated“also-viewed”prod-
ucts help us reflect various aspects of products in the prod-
uct embedding, and thus eventually compensate for a lack of
rated products. Moreover, “also-viewed” products are more
helpful when only a few rated products are given, i.e., “Cold-
start” setting.

Our main contributions are summarized as follows:
1. To reflect the relationships among products in terms

of various aspects such as appearances, functionality
and specifications, we build a so-called product-affinity
network using “also-viewed” products.

2. We then simultaneously factorize user ratings data and
the product-affinity network by sharing the product
embedding, which results in high-quality product em-
bedding, and eventually, more accurate user rating
prediction.

3. Experimental results on multiple real-world datasets
demonstrate that our proposed method significantly
outperforms state-of-the-art methods, especially in“Cold-
start” setting where each product has only a few rat-
ings.

4. By additionally performing classification on product
embedding, we empirically demonstrate that the prod-
uct embedding generated by our method represents the
latent dimensions of products better than a state-of-
the-art method.

The remainder of this paper is organized as follows: We
briefly review related work in Section 2, and provide the for-
mulation of the problem that we solve in Section 3. We then
introduce our proposed method in Section 4, followed by re-
sults of comprehensive experiments on real-world datasets in
Section 5. Finally, the conclusion is presented in Section 6.

2. RELATED WORK
While recommender systems have lately generated a vast

amount of research literature, we only review the studies
closely related to ours, i.e., matrix factorization and visually-
aware approaches for recommendation.

Matrix Factorization.
The goal of matrix factorization (MF) is, given n users

and m products, to decompose rating matrix R ∈ Rn×m

into two low rank-K matrices U ∈ RK×n and V ∈ RK×m,
and minimize the reconstruction error as follows [23]:

min
U,V

1

2

n∑
i=1

m∑
j=1

Iij
(
rij − UT

i Vj

)2
+
λu

2
||U ||2F +

λv

2
||V ||2F (1)

where rij is the rating assigned by user i to product j,
Ui ∈ RK and Vj ∈ RK represent the embedding for user
i and product j, respectively, where K is the dimensionality
of the rating embedding space. Iij equals to 1 if rij = 1,
and 0 otherwise. λu and λv are regularization parameters
for user embedding matrix U and product embedding ma-
trix V , respectively, and || · ||2F denotes the Frobenius norm.
The gradient descent-based optimization technique is gen-
erally applied to find the local minimum solution for Eq. 1.
Matrix factorization is commonly used as a building block
for extending recommender systems to incorporate side in-
formation such as social networks [7, 15, 19, 20], textual
data [1, 10, 25, 26], or both [5, 21], temporal dynamics [12,
27], and product images [8, 9].

Visually-Aware Approaches for Recommendation.
The appearance of a product is one of the most impor-

tant aspects that impacts user ratings in online shopping.
However, it has been commonly ignored because past im-
age feature extraction methods failed to achieve satisfac-
tory performance in visual machine learning tasks such as
image classification and object detection. However, recent
breakthroughs in deep learning has facilitated such tasks to
attain high performance, and thus product image is now rec-
ognized as a valuable source of side information for recom-
mender systems. Specifically, image features extracted from
a pre-trained Convolutional Neural Network (CNN) effec-
tively represent the latent properties of images. He et al. [8,
9] recently introduce visually-aware recommender systems
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based on the framework of matrix factorization. They em-
bed high-dimensional image features extracted from a pre-
trained CNN into low-dimensional features, and use them to
model user and product visual embeddings. Their main con-
cern is the appearance of a product, which plays a significant
role in clothing domain. However, other product aspects are
ignored, such as functionality and specification, which are
certainly more significant than appearance in domains such
as Automotive, Pet supplies, and Office products.

Meanwhile, McAuley et al. [17, 18] use the “also-viewed”
product information to recommend visually alternative prod-
ucts in clothing domain as a link prediction task. Our pro-
posed method is different from this method in that we lever-
age “also-viewed” product information for a user rating pre-
diction task to consider various aspects beyond appearance in
product embedding, which improves user rating prediction
in general domains not limited to the clothing domain.

3. PROBLEM FORMULATION

3.1 Notations
We first introduce the notations used in this paper. Let
U = {u1, u2, ..., un} be the set of users and V = {v1, v2, ..., vm}
be the set of products, where n and m are the number of
users and products, respectively. The ratings assigned by
users in U to products in V are represented by rating matrix
R = [rij ]n×m, where rij denotes the rating that user i as-
signs to product j. Depending on the application, rij can be
either a real number or a binary value. When users explicitly
express their opinions on products, rij is a real number, of-
ten in the range [1,5], and when R reflects users' action such
as click or non-click and bookmarked or not bookmarked, rij
is a binary value. Although this paper focuses on the former
case, it can readily be applied to the latter as well. With-
out loss of generality, we convert the ratings of 1...5 into the
interval [0,1] through normalization. The notations used in
the paper are summarized in Table 1.

3.2 Extracting Visual Features
As in [8, 9], we use a pre-trained CNN to extract features

from product images. Precisely, we use the CNN architec-
ture proposed by [13], which was trained on 1.2 million Im-
ageNet (ILSVRC2010) images [22]. We pass m products
through the pre-trained CNN, and extract the outputs of
the second fully-connected layer to construct a product fea-
ture matrix F ∈ RC×m, the column vector fj ∈ RC of which
denotes the visual feature vector of product j ∈ V, where
C = 4096. Moreover, we introduce an embedding kernel
matrix E ∈ RD×C to transform high-dimensional visual fea-
tures fj ∈ RC into D-dimensional product visual embedding
space by Efj .

3.3 Constructing Product-affinity Network
In order to incorporate “also-viewed” product information

into our method, we build a so-called product-affinity net-
work whose nodes denote products and edges encode the
“also-viewed” relationships among products. As shown ear-
lier in Example 1, neighboring products in the product-
affinity network share common product aspects such as ap-
pearance, functionality and specifications, which implies that
various aspects of the product are reflected in the network.
Note that the edges are directed from a target product to

Table 1: Notations.

Notation Explanation

U ,V User set (|U| = n), Product set(|V| = m)
R Rating matrix (n×m)
S Product-affinity matrix (m×m)
F Visual feature matrix (C ×m)
fj Visual feature of product j (C × 1)
rij Rating assigned by user i to product j
sjk sjk = 1 if product j and k are neighboring nodes
K Num. dimensions of product embedding
D Num. dimensions of product visual embedding
C Num. dimensions of CNN features
Ui, Vj Embedding for user i and product j (K × 1)
Pi, Qj Visual embedding for user i and product j (D × 1)
Zk “Also-viewed” product embedding for product k (K × 1)
E Embedding kernel matrix (D × C)
g(·) Sigmoid function

its “also-viewed” products, and therefore the relationships
are usually not symmetric. We represent the product-affinity
network as a product-affinity matrix S = [sjk]m×m such that
each entry sjk is defined as:

sjk =

{
1 k ∈ Nj .

0 otherwise.
(2)

where Nj denotes the set of “also-viewed” products of prod-
uct j.

Given the aforementioned notations, visual features and
product-affinity matrix, our problem is defined as:

Problem Definition .
Given: The observed rating matrix R, product visual fea-
ture matrix F and product-affinity matrix S
Goal: Predict missing ratings rij ∈ R, where i ∈ U and
j ∈ V

4. METHOD
In this section, we describe our Visual Matrix Co-Factorization

(VMCF) method that leverages “also-viewed” product infor-
mation projected on product-affinity matrix S in order to
take into account various product aspects overlooked by past
visually-aware recommendation methods. We first explain
how ratings R and the product-affinity matrix S are mod-
eled independently, and demonstrate how these two models
are jointly combined using the graphical model described in
Figure 2.

4.1 Modeling Rating
Given user-product rating matrix R = [rij ]n×m, with n

users and m products, let rij represent the rating of user i
for product j, and U ∈ RK×n and V ∈ RK×m be user and
product embedding matrices, with column vectors Ui and
Vj representing user-specific and product-specific embedding
vectors, respectively. Moreover, in order to incorporate the
visual factors into our model, given user and product vi-
sual embedding matrices P ∈ RD×n and Q ∈ RD×m re-
spectively, the term PT

i Qj is added [9] where Pi ∈ RD and
Qj ∈ RD denote the user-specific and product-specific visual
embedding vectors, respectively, whose inner product mod-
els the visual correspondence between user i and product j.
Given the embedded visual feature Qj = Efj as explained
in Section 3.2, we define the conditional distribution over
the observed ratings as:
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P (R|U, V, P,E, σ2
R) =

n∏
i=1

m∏
j=1

[
N (rij |g(UT

i Vj + PT
i Qj), σ

2
R)
]IRij

=

n∏
i=1

m∏
j=1

[
N (rij |g(UT

i Vj + PT
i Efj), σ

2
R)
]IRij (3)

where N (x|µ, σ2) denotes the probability density function of
a Gaussian distribution with mean µ and variance σ2, and
IRij is the indicator function that is equal to 1 if user i rated
product j, and 0 otherwise. We use the logistic function
g(·) to restrict the range of UT

i Vj + PT
i Efj within [0,1],

and convert rating rij into the range [0,1]. For each hidden
variable, we place zero-mean spherical Gaussian priors [23]
as follows:

P (U |σ2
U ) =

n∏
i=1

N (Ui|0, σ2
UI), P (V |σ2

V ) =

m∏
j=1

N (Vj |0, σ2
V I)

P (P |σ2
P ) =

n∏
i=1

N (Pi|0, σ2
P I), P (E|σ2

E) =

D∏
p=1

C∏
q=1

N (Epq|0, σ2
E)

(4)

Given Eqs. 3 and 4, we can compute the log-posterior
distribution over the hidden variables:

P (U, V, P,E|R, σ2
U , σ

2
V , σ

2
P , σ

2
E, σ

2
R)

∝ P (R|U, V, P,E, σ2
R)P (U |σ2

U )P (V |σ2
V )P (P |σ2

P )P (E|σ2
E)

=

n∏
i=1

m∏
j=1

[
N (rij |g(UT

i Vj + PT
i Efj), σ

2
R)
]IRij

×
n∏

i=1

N (Ui|0, σ2
UI)×

m∏
j=1

N (Vj |0, σ2
fI)

×
n∏

i=1

N (Pi|0, σ2
P I)×

D∏
p=1

C∏
q=1

N (Epq|0, σ2
E)

(5)

4.2 Modeling Also-viewed Relationships
With regard to the product-affinity matrix S, we define the

conditional distribution over the observed product-affinity
matrix as:

P (S|V,Z, σ2
S , σ

2
Z) =

m∏
j=1

m∏
k=1

[
N (sjk|g(V T

j Zk), σ2
S , σ

2
Z)
]ISjk

(6)
where Z ∈ RK×m is the “also-viewed” product embedding
matrix, with column vector Zk representing “also-viewed”
product-specific embedding vector for product k. We model
“also-viewed” relationship between product j and k by V T

j Zk

rather than V T
j Vk in order to reflect the asymmetric nature

of the product-affinity network. ISjk is the indicator func-
tion that is equal to 1 if product k belongs to one of the
“also-viewed”products of product j, and 0 otherwise. Again,
we place zero-mean spherical Gaussian priors on the hidden
variables V and Z as:

P (V |σ2
V ) =

m∏
j=1

N(Vj |0, σ2
V I), P (Z|σ2

Z) =

m∏
k=1

N(Zk|0, σ2
ZI)

(7)

Hence, given Eqs. 6 and 7, we can compute the log-posterior
distribution over the hidden variables as:

P (V,Z|S, σ2
V , σ

2
Z , σ

2
S) ∝ P (S|V,Z, σ2

S)P (V |σ2
V )P (Z|σ2

Z)

=

m∏
j=1

m∏
k=1

[
N(sjk|g(V T

j Zk), σ2
S)
]ISjk

×
m∏

j=1

N(Vj |0, σ2
V I)

m∏
k=1

N(Zk|0, σ2
ZI)

(8)

4.3 Unified Model
Thus far, we have shown how to independently model the

ratings and “also-viewed” relationships among products. In
this section, we propose a unified model where user ratings
with associated product images are combined with “also-
viewed” product information, which eventually yields high-
quality product embeddings. Given an observed product
j rated by user i, Figure 2 illustrates how we fuse both
the rating model introduced in Section 4.1 and the “also-
viewed” relationship model introduced in Section 4.2 into a
matrix co-factorization framework by sharing the product
embedding matrix V .

Based on Figure 2, the log-posterior distribution of VMCF is
given by:

P (U, V, P, Z,E|R,S, σ2
U , σ

2
V , σ

2
P , σ

2
Z , σ

2
E, σ

2
R, σ

2
S)

∝ P (R|U, V, P,E, σ2
R)× P (S|V, Z, σ2

S)

P (U |σ2
U )P (V |σ2

V )P (P |σ2
P )P (Z|σ2

Z)P (E|σ2
E)

= −
1

2σ2
R

n∑
i=1

m∑
j=1

IRij

(
rij − g(UT

i Vj + PT
i Efj)

)2
−

1

2σ2
S

m∑
j=1

m∑
k=1

ISjk

(
sjk − g(V T

j Zk)
)2

−
1

2σ2
U

n∑
i=1

UT
i Ui −

1

2σ2
V

m∑
j=1

V T
i Vi −

1

2σ2
P

n∑
i=1

PT
i Pi

−
1

2σ2
Z

m∑
k=1

ZT
k Zk −

1

2σ2
E

D∑
p=1

C∑
q=1

E2
pq

−
1

2

 n∑
i=1

m∑
j=1

IRij

 lnσ2
R +

 m∑
j=1

m∑
k=1

ISjk

 lnσ2
S


−

1

2

(
nK lnσ2

U+mK(lnσ2
V + lnσ2

Z)+nD lnσ2
P+DC lnσ2

E

)
+C

(9)

where C is a constant that is independent from the variables
to be learned. Maximizing the log-posterior over the hidden
variables with fixed hyper-parameters (i.e., the observation
noise variances and prior variances) is equivalent to mini-
mizing the following objective function:

L(R,S, U, V, P, Z,E) =

1

2

n∑
i=1

m∑
j=1

IRij

(
rij − g(UT

i Vj + PT
i Efj)

)2
+
λS

2

m∑
j=1

m∑
k=1

ISjk

(
sjk − g(V T

j Zk)
)2

+
λU

2
||U ||2F +

λV

2
||V ||2F +

λP

2
||P ||2F +

λZ

2
||Z||2F +

λE

2
||E||2F

(10)

where λS = σ2
R/σ

2
S , λU = σ2

R/σ
2
U , λV = σ2

R/σ
2
V , λP =

σ2
R/σ

2
P , λZ = σ2

R/σ
2
Z , λE = σ2

R/σ
2
E and || · ||2F denotes the
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Figure 2: Graphical Model for Visual Matrix Co-
Factorization (VMCF), where shaded nodes denote observed
variables and the rest, hidden variables.

Frobenius norm. Note that λS is a balancing parameter
that regulates the importance of “also-viewed” products in
the unified model. Having formulated a non-convex objec-
tive function as Eq. 10, we compute the gradient of each
embedding variable, i.e., Ui, Vj , Pi, Zk, E, and learn them
by gradient descent to obtain a local minimum solution. Re-
fer to Appendix A for the time complexity of VMCF and
Appendix B for the detailed equations for the gradients.

Reduced Model. Note that when images of products are
not available, the final objective function is reduced to:

L(R,S, U, V, Z) =
1

2

n∑
i=1

m∑
j=1

IRij

(
rij − g(UT

i Vj)
)2

+
λS

2

m∑
j=1

m∑
k=1

ISjk

(
sjk − g(V T

j Zk)
)2

+
λU

2
||U ||2F +

λV

2
||V ||2F +

λZ

2
||Z||2F

(11)

As previously mentioned, in domains where appearance of
a product is not significant for modeling user ratings, such
product aspects as functionality and specifications are more
influential to user ratings than appearance. Thus, the re-
duced model as in Eq. 11 can be still beneficial, especially
for the product domains where the appearance is not impor-
tant. We dub this model Matrix Co-Factorization (MCF),
and demonstrate the benefit of the reduced model in product
domains where appearance is not important in Section 5.4.

5. EXPERIMENTS
In this section, we conduct experiments to verify the su-

periority of our methods by comparing their performance
with several state-of-the-art methods on multiple real-world
datasets. The experiments are designed to verify the follow-
ing questions:

Q.1 How do MCF and VMCF perform compared with other
competitors in both the visually-aware (Boys’ and Girls’
Clothing) and the visually non-aware product domains
(Automotive, Pet Supplies and Office Products)?

Table 2: Data Statistics. #Relations implies the number of
edges in the product-affinity network

.

Dataset #Users #Prod. #Ratings #Relations

Boys’ Clothing 4,496 6,391 15,997 31,370

Girls’ Clothing 5,941 9,549 22,524 51,990

Automotive 84,418 126,934 406,852 2,162,853

Pet Supplies 85,115 49,048 427,543 1,066,131

Office Prod. 50,570 40,181 240,146 672,586

Table 3: Properties of methods being compared.

Baselines Personalized?
Visually-

Aware?

Incorporate

“also-viewed”?

ItemCF X X X

PMF O X X

VMF O O X

MCF O X O

VMCF O O O

Q.2 By leveraging“also-viewed”products, do we indeed ob-
tain high-quality product embedding?

Q.3 How does model parameter λS and the number of em-
bedding dimensions K affect the user rating prediction
accuracy?

5.1 Datasets
We use five public datasets2 extracted from Amazon.com

by McAuley et al. [18]. The datasets include user ratings
data and product metadata, which includes URLs for prod-
uct image, price, a list of also bought product, a list of also
viewed products, and etc. Among these metadata, we use
the lists of also viewed products to construct our product-
affinity network. Aiming at demonstrating the benefit of
our model in general product domains, we not only use two
datasets (Boys’ Clothing and Girls’ Clothing) from domains
where the appearance of a product is significant, but also
three datasets (Automotive, Pet Supplies and Office Prod-
ucts) from domains where other product aspects, such as
product functionality and specifications, play a more signif-
icant role than the appearance. We preprocess all datasets
so that each user rated at least three products. Moreover,
every product in the product-affinity network also exists in
the user ratings data. Table 2 shows the detailed statistics
of the datasets.

5.2 Comparison Methods

• ItemCF: A traditional recommendation method based
on the similarity of products [24], where Pearson’s cor-
relation coefficient is used as similarity measure.

• PMF: Matrix factorization-based recommendation method
that considers only user ratings information [23].

2http://jmcauley.ucsd.edu/data/amazon/
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Figure 3: Performance comparison in terms of MSE. Lower MSE implies better performance.

Figure 4: Skewness of the number of rated products in each
dataset. Most products received very few ratings.

• VMF: A visually-aware matrix factorization-based method
that incorporates product images but not“also-viewed”
product information. We use the rating prediction
model introduced in [9], from which bias terms are ex-
cluded to clearly investigate the benefit of incorporat-
ing product images themselves. The rating assigned by
user i to product j is modeled as r̂ij = UT

i Vj + PT
i Efj ,

and the objective function to minimize is formulated
as:

L =
1

2

n∑
i=1

m∑
j=1

IRij(rij − g(r̂ij))
2 + Ω(U, V, P,E)

where Ω(·) is the regularization to avoid model over-
fitting.

In order to provide a clear understanding of baseline meth-
ods, we provide a summary of their properties in Table 3.
Furthermore, these baselines are chosen for the following
reasons:

1. PMF vs. VMF

a) To verify the benefit of incorporating product im-
ages in both visually-aware and visually non-aware prod-

uct domain, and b) To verify that appearance is more
significant in clothing domain than other domains.

2. VMF vs. MCF

To verify that other aspects besides appearance are
more significant in visually non-aware product domain
than in visually-aware product domain.

3. VMF, MCF vs. VMCF

To demonstrate the benefit of jointly modeling prod-
uct images and “also-viewed” product information in
both visually-aware and visually non-aware product
domain.

5.3 Experimental Settings

Evaluation Metric. We employ the Mean Squared Error
(MSE), a metric that has been commonly used for evaluating
the performance of user rating prediction on the Amazon
dataset [2, 14, 16]. The MSE is defined as:

MSE =

∑
i,j (rij − r̂ij)2

N
(12)

where rij denotes the rating that user i assigned to prod-
uct j, r̂ij denotes the corresponding predicted rating, and
N denotes the number of ratings in the test dataset. The
MSE is an appropriate metric for our experiments because
the objective functions of the methods being compared are
originally designed to minimize the MSE.

Evaluation Protocol. We randomly sample 80% of the
user ratings datasets for training, and the remaining 20%
is used for testing. Random sampling is independently con-
ducted five times, and we evaluate the baselines and our
methods on each dataset. Finally, we report here the mean
and standard deviation (error bar) of the MSE on each test
dataset.
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Cold-start Evaluation. In addition to the “All” setting
where we evaluate on all the ratings in the test dataset, we
also evaluate our methods on the “Cold-start” setting where
ratings in the test dataset are sampled such that each prod-
uct (cold-product) has fewer than four ratings in the train-
ing dataset. Note that as shown in Figure 4, most prod-
ucts received very few ratings. Precisely, cold-products con-
stitute approximately 85% in Boys’ Clothing, Girls’ Cloth-
ing and Automotive, 70% in Pet Supplies and Office Prod-
ucts. These statistics indicate that most products are cold-
products in the real-world online shopping environment, and
thus evaluations on cold-products are in fact more crucial
than evaluations on every product.

Parameters. For ItemCF, we set the number of neighbors
to 20. For all other matrix factorization-based methods, in
order to find the best parameters for each dataset, we per-
form grid search with λU , λV , λP ∈ {0.01, 0.1, 0.5, 1.0}, λZ ∈
{0.1, 0.01}, λE ∈ {0.1, 1, 3, 7, 9, 10, 11} and λS ∈ {0.01, 0.1,
0.5, 1.0} while K and D are fixed to 5. As a result, while
λU = λV = λP = 0.1, λZ = 0.01 exhibit the best perfor-
mance for all datasets, λE = 7 and λS = 0.2 yield the best
results for Boys’ Clothing, λE = 7 and λS = 0.1 for Girls’
Clothing, λE = 11 and λS = 0.4 for Automotive; λE = 11
and λS = 1.0 for Pet Supplies, and λE = 10 and λS = 0.1
for Office Products.

5.4 Performance Analysis (Q.1)
Figure 3 summarizes the evaluation results on each dataset

in terms of MSE where performance is evaluated under two
settings, i.e., “All” and “Cold-start”. Note that visually-
aware product domain denotes Boys’ Clothing and Girls’
Clothing, and visually non-aware product domain denotes
Automotive, Office Products and Pet Supplies.

1) Benefit of visual features in both domains (PMF
vs. VMF).
We observe that in both the visually-aware and the visu-
ally non-aware product domain, incorporating visual fea-
tures helps to improve user rating prediction accuracy, while
the improvement is more significant in visually-aware prod-
uct domain. This agrees with our expectations whereby a)
appearance plays a more significant role in modeling user
ratings in visually-aware product domain, and b) although
other product aspects are more influential in visually non-
aware product domain, visual features are indeed still helpful
in modeling user ratings. Note that the performance gain of
VMF compared with PMF becomes more significant under
the “Cold-start” setting, which indicates that visual features
become more valuable when a product only has a few rat-
ings.

2) Varying significance of product aspects in differ-
ent domains (VMF vs. MCF).
We observe that in the visually-aware product domain, the
user rating prediction accuracy of VMF outperforms MCF,
whereas MCF outperforms VMF in the visually non-aware
product domain. This agrees with Example 1 in Section 1,
in that appearance plays the most significant role in visually-
aware product domain, whereas other product aspects be-
yond appearance play a more significant role in visually non-
aware product domain.

3) Benefit of jointly modeling product images and
“also-viewed” product information (VMF, MCF vs.
VMCF).
We observe that in the visually-aware product domain, VMCF
outperforms both VMF and MCF. This indicates that in the
visually-aware product domain, other aspects beyond ap-
pearance of products are also taken into account by model-
ing the “also-viewed” relationship, which in turn yields fur-
ther improvements in user rating prediction accuracy. Such
a benefit becomes clearer in the “Cold-start” setting.

Meanwhile, under the “All” setting in the visually non-
aware product domain, VMCF fails to outperform MCF. This
implies that when a sufficient number of ratings is assigned
to each product, visual features in the visually non-aware
product domain are in fact considered as noise, and thus de-
grade user rating prediction accuracy. However, it is worth
noting that under the “Cold-start” setting, the performance
of VMCF is comparable to that of MCF or even better in
Pet Supplies and Office Products. This indicates that visual
features remain helpful even in the visually non-aware prod-
uct domain, when we are provided with only a few rated
products.

5.5 Quality of Product Embedding (Q.2)
Besides the performance evaluations in terms of the ac-

curacy of user rating prediction, we additionally evaluate
the quality of product embedding generated by our pro-
posed method in comparison with VMF. To do so, we per-
form classification on both product embedding V ∈ RK×m

and product visual embedding Q ∈ RD×m whose goal is to
classify which category a product belongs to. In order to
demonstrate that the classification results are reliable and
robust, we select four classification algorithms, i.e., Logis-
tic regression (LR), Support vector machine (SVM), Ran-
dom forest (RF) and Gradient boosting (GB). The input
products for classification algorithms belong to the top-10
most frequently appeared categories in each dataset, and
each product is labeled by its corresponding category. Refer
to Appendix C for the list of these categories in each dataset.
We perform five-fold cross-validation and report the mean
and standard deviation (error bar).

Figure 5 shows the results of classification. We observe
that in the visually non-aware product domain, classification
accuracy on product embedding V and the product visual
embedding Q generated by VMCF outperform those gener-
ated by VMF. This indicates that VMCF generates more
high-quality embeddings than VMF, which eventually results
in higher accuracy in user rating prediction as shown in Fig-
ure 3. Meanwhile, in the visually-aware product domain,
while VMCF outperforms VMF in the user rating prediction
task, the classification accuracy of VMCF on V is higher than
that of VMF, but its the accuracy on Q is lower. We conjec-
ture that using only product images is helpful for the prod-
uct classification task because visual features are generated
by a pre-trained CNN originally designed for image classifi-
cation task. In contrast, for our user rating prediction task,
product embedding V , which models the “also-viewed” prod-
uct information where various product aspects are reflected,
works in synergy with Q to improve user rating prediction
accuracy.
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Figure 5: Classification results on product embedding V and product visual embedding Q.

Figure 6: Impact of Parameter λS on VMCF.

Figure 7: Results of various number of embedding dimen-
sions K.

5.6 Sensitivity Analysis (Q.3)

Influence of balancing parameter λS

λS is a hyper-parameter that regulates the importance of
“also-viewed” product information in our proposed method
VMCF. When λS = 0, we ignore “also-viewed” product in-
formation, whereas when λS = ∞, we only exploit “also-
viewed” product information. Figure 6 shows the evaluation
results of VMCF performed on each dataset under the“Cold-
start” setting. We observe that incorporating “also-viewed”
product information indeed improves user rating prediction
performance, and the optimal value of λS is different in each
dataset, which is mostly a value in the range [0.0, 1.0].

Influence of num. dimensions K of product embed-
ding

Figure 7 shows the evaluation results on the test set of Girls’
Clothing and Automotive over different numbers of embed-

ding dimensions K under the“All”setting, given a fixed D =
5. We observe that for all methods (PMF, VMF, MCF and
VMCF) the value of MSE decreases as the number of latent
dimensions increases. However, since the total complexity
of VMCF is linear in the number of embedding dimensions as
demonstrated in Appendix A, a proper value of K should be
found such that complexity is practically acceptable within
computational limitations. Evaluations on other datasets
yield similar results, and are thus omitted here for brevity.

6. CONCLUSION & FUTURE WORK
Every product domain has dominant aspects that are more

influential to user ratings than others. In clothing domain,
the appearance of products plays the most significant role,
whereas in other domains such as Automotive, Pet Supplies
and Office Products, other aspects such as product func-
tionality and specifications are more influential. In this pa-
per, we propose a matrix co-factorization framework that
jointly factorizes user ratings data and “also-viewed” prod-
uct information that reflects various product aspects that are
varyingly influential to user ratings in different product do-
mains. We empirically show that this information is helpful
for user rating prediction by generating more high-quality
product embedding, especially under the “Cold-start” set-
ting. Our method is useful for online retailers such as Ama-
zon and eBay3, where product images are provided to cus-
tomers and their browsing histories are collected. Although
we only leverage “also-viewed” product information in this
paper, other relationships among products are also preva-
lent, such as “also-bought”, “frequently-bought-together” or
“bought-after-buying”. In the future, we plan to investi-
gate whether these relationships are helpful in generating
even more high-quality product embedding, and if so, how
to properly integrate them into our system to model user
ratings.

3http://www.ebay.com/
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APPENDIX
A. COMPLEXITY ANALYSIS

The overall complexity of VMCF is composed of the cal-
culation of both Eqs. 10 and 13. Considering the sparse-
ness of R and S, the computation Eq. 10 has complexity
O(ρ(K + D) + µK), where ρ denotes the average number
of observed ratings in R, and µ denotes the average num-
ber of observed elements in S. Next, for the gradients in
Eq. 13, computing ∂L

∂Ui
, ∂L

∂Vj
, ∂L

∂Pi
, ∂L

∂Zk
and ∂L

∂E
incur com-

plexity O(ρK), O(ρK + µK), O(ρDC̄) = O(ρD), O(µK)
and O(ρDC̄) = O(ρD), respectively, where C̄ is the average
number of non-zero elements in a CNN feature (fj). Note
that C̄ is a small value, since the CNN feature is very sparse.
Thus, we obtain a total complexity of O(ρ(K + D) + µK).
This analysis indicates that the complexity of VMCF is lin-
ear in the number of embedding dimensions.

B. GRADIENTS OF EQUATION 10

∂L

∂Ui
=

m∑
j=1

IRij(g(r̂ij)− rij)g′(r̂ij)Vj + λUUi

∂L

∂Vj
=

n∑
i=1

IRij(g(r̂ij)− rij)g′(r̂ij)Ui

+ λS

m∑
k=1

ISjk(g(ŝjk)− sjk)g′(ŝjk)Zk + λV Vj

∂L

∂Pi
=

m∑
j=1

IRij(g(r̂ij)− rij)g′(r̂ij)Efj + λPPi

∂L

∂Zk
= λS

m∑
j=1

ISjk(g(ŝjk)− sjk)g′(ŝjk)Vj + λZZk

∂L

∂E
=

n∑
i=1

m∑
j=1

IRij(g(r̂ij)− rij)g′(r̂ij)Pif
T
j + λEE

(13)

where g′(x) = exp(x)/(1 + exp(x))2 denotes the derivative
of the logistic function.

C. TOP-10 MOST FREQUENT CATEGORIES

• Boys’ Clothing: Athletic, Boots, Sneakers, Tops &
Tees, Costumes & Accessories, Sandals, Kids & Baby,
Pants, Shirts, Hoodies

• Girls’ Clothing: Boots, Athletic, Sneakers, Costumes
& Accessories, T-Shirts, Jewelry, Kids & Baby, San-
dals, Special Occasion, Playwear

• Automotive: ‘Shocks, Struts & Suspension’, ‘Paint,
Body & Trim’, Filters, Brake System, Protective Gear,
Bulbs, Decals & Bumper Stickers, Floor Mats & Cargo
Liners, Towing Products & Winches, Car Care

• Pet Supplies: ‘Collars, Harnesses & Leashes’, Food,
Health Supplies, Toys, Treats, Apparel & Accessories,
Pumps & Filters, Beds, Carriers & Travel Products,
Shampoos & Conditioners

• Office Products: Pens & Refills, Paper, Inkjet Printer
Ink, ‘Labels, Indexes & Stamps’, Laser Printer Toner,
Office Furniture & Lighting, ‘Envelopes, Mailers &
Shipping Supplies’, Notebooks & Writing Pads, Tele-
phones & Accessories, ‘Forms, Recordkeeping & Money
Handling’
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